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Part |I.

Introduction

This part explains the motivation for this work and gives a short overview of the status of
current research in the area of genetic networks, as well as an introduction to the main model
organisms used in the simulation: Caenorhabditis elegans.






1. Overview and Motivation

Recent methods for large-scale acquisition of biological data have led to an enormous collec-
tion of information on gene sequences, gene expression, and protein structures. However, this
has not led to the expected concurrent increase in knowledge. Therefore, advanced methods
for the interpretation of data are required, not only on the molecular scale, but also on a higher
level of whole cells and even whole organisms. The scientific field that has focused on this
is called systems biology. The aim of systems biology is to understand how whole organisms
work and how their molecular compounds interact to make up a living being.

One approach taken is to simulate an organism. The ulterior motive is that if a computer al-
gorithm is found that reproduces a biological process, then scientists can look at the algorithm,
manipulate it, and gain some insight on how the biological mechanism works.

A lot of work has already been done on simulation of singlecellular organisms such as bac-
teria or yeast. Even some multicellular models have been created and simulated successfully.
One of these is a model of the Drosophila embryo by Bodnar (1997). He suggests

[...] that enough data is available to do the same for Caenorhabditis elegans
embryogenesis [.. . ]

At the time | started to work on my thesis in the division Medical and Biological Informat-
ics at the German Cancer Research Center in Heidelberg, the software framework CELL-O
was being developed there. It was then used for three-dimensional simulation of cells. It was
specialised on simulation of C. elegans, but could easily be extended to other cellular systems.

Therefore | decided to focus on the simulation of embryonic development of C. elegans and
to develop a new method for the simulation of genetic regulatory networks in multicellular
organisms. After studying current literature on regulatory interactions in the early embryo, my
head was stuffed with genes and interactions, and | realised that a tool was needed that allowed
to store the data in a comprehensive way. Thus | developed a graphical editor for genetic
networks. After implementing the simulation algorithms I decided that GENE-O-MATIC, as
the application was called by now, might be a valuable tool for any experimental biologist,
and thus extra attention was paid to the graphical user interface, to make it most convenient
and easy to use.

| applied the program to build a model of blastomere fate specification in C. elegans (con-
sisting of a genetic network plus cells), and to simulate its behaviour, i.e. the expression and
activity of the genes and cell movement and division over time. Because there is not only a lot
of research going on about C. elegans, but also on other model organisms, | wanted to demon-
strate the applicability of GENE-O-MATIC to other systems, which was done by simulating
Arabidopsis thaliana.

The results of both the C. elegans and Arabidopsis simulations show very good agreement
with experimental data. In addition, modifications to the C. elegans network reproduce the
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effects seen in animals with the corresponding mutations. In some cases, assumptions had to
be made to compensate for gaps in the data, which led to the proposal of experiments that
could be performed to gain more information. These findings show that GENE-O-MATIC is a
powerful aid to model building, experimental design, and hypothesis testing in biology.

1.1. Outline

The first part of the thesis gives an introduction to the subject. The state of the art in genetic
network analysis and simulation is presented, and some approaches to modelling biological
systems are described to compare them later to the approach taken in this thesis. Biological
facts about the modelled organisms are given to facilitate the understanding of the results for
non-biologists.

The second part of the thesis portrays the software used and implemented during the thesis.
Extensions to the existing software framework are explained, and the implementation of the
new application GENE-O-MATIC is described. The last chapter in this part delineates the
details of the simulation algorithms.

The results achieved with the simulation software are depicted in the next part. Different
models and their simulation results are presented and compared to experimental data.

In the final part, the results and their implications for experimentalists are discussed. The
benefits and drawbacks of the chosen simulation method are contrasted and prospects for the
future given.

The appendix contains additional information and tables. The user manual explains how to
use GENE-O-MATIC. A short overview of UML aids in understanding the diagrams in chap-
ters 5 and 6. The tables summarise biological data about C. elegans embroynic development.



2. Genetic Networks and Biological
Simulation

The term genetic network denotes a set of regulatory entities and their interactions (cf. fig-
ure 2.1). It is most often used on the level of transcriptional regulation (thus the word genetic),
but may also include translational or even protein activity regulation. In contrast to metabolic
networks, which describe the influence enzymes have on chemical reactions, genetic networks
describe the influence one molecule has on another. Genetic networks may include DNA se-
guences such as genes, promoters, and other regulatory sequences, mRNAs, and all types of
proteins. As a collective term for the elements of a genetic network, here the term biological
information carrier (BIC) is used. Often the term gene is used, but this is misleading because
it is not always clear if a real gene or the collective term for gene, mRNA, or protein is meant.
Therefore | prefer to use the more general term BIC instead. Arrows between the BICs in the
network depict interactions. Usually there are two types of interactions: activating (painted
with an arrowhead) and inhibiting (with a crossbar).

| Transcriptional Repressor |

Comoiy e’

| mRNA | [ Activating_Protein |

Figure 2.1.: A genetic network may contain promoters and other regulatory sequences, genes,
mRNAs, and proteins (jointly called biological information carriers or BICs).
Arrows between the elements depict how the elements influence each other. Here,
blue arrows with arrowheads indicate a positive influence, and red arrows with
crossbars indicate inhibitory influence.
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2.1. Biological Relevance of Regulatory Networks

For a long time the complexity of biological experiments forced molecular biologists to focus
their research on single proteins, or linear signalling cascades. The simultaneous experimental
analysis of whole networks became feasible only with the invention of the microarray tech-
nique. Besides, it was assumed that different signalling pathways did not crosstalk, because
nobody could imagine how that should work. However, newer results show that there are in-
deed cases where pathways interact and influence each other, and it becomes apparent that
this is not only an exception, but may well be the rule. Therefore a holistic view on biological
processes becomes more and more important.

The first genetic networks were simple paintings made by experimentalists. Their aim
was to give an overview of a regulatory process. Now, the acquisition of large amounts of
data by means of cDNA arrays, RNAI screens, yeast one- and two-hybrid screens, and co-
immunoprecipitation, for example, makes larger, automatically-generated paintings necessary.
Still, the fully automated elucidation of regulatory interactions from experimental data is not
possible yet, and the significance of the interpretation of large datasets by computational meth-
ods such as clustering is arguable. Furthermore, there are processes such as embryonic devel-
opment which are simply not accessible to the microarray technique because protein expres-
sion in single cells needs to be assessed. Therefore it is often required to compile a genetic
network by hand, after collecting data gathered in hundreds or thousands of experiments. The
effort repays, however, because computational or mathematical analysis of genetic networks
can give new insights into the regulatory process.

2.2. Mathematical Models of Genetic Networks

In most multicellular organisms, each cell in an organism contains identical genetic informa-
tion. But different cells use this information in different ways. The use of genetic information
can be regulated at three levels: DNA (transcription), mRNA (splicing and translation), and
protein (activity and degradation).

Several computer programs have been developed to analyze genetic networks and to identify
stable states, which correspond to differentiated cell types. These programs present a static
view of the differentiation process because they identify the stable states but do not describe
the process of differentiation. Furthermore they do not take into account cell-cell interactions
which are an important means of relaying fate specification signals. Nonetheless they can give
valuable information on the soundness of a network, for example if the calculated stable states
do not match the observed cell types, something must be wrong or at least still missing. For a
recent review on modelling and simulation of genetic networks, see (de Jong, 2002).

Drosophila is the first organism for which a complex developmental model based on ge-
netic data has been published (Bodnar, 1997; Bodnar and Bradley, 2001). Bodnar (1997) sug-
gests that there is already enough data to perform similar simulations for other organisms, and
specifically names C. elegans.
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2.3. Simulation of Biological Processes

The comparison of simulation results with reality can give important information about the
correctness of the underlying model. On the one hand, models that do not have the necessary
level of precision, or those where some elements are missing or mis-placed will never produce
the expected results in a simulation. On the other hand, if the simulated results are totally
consistent with reality, this does not necessarily mean that the model adequately represents
reality, too. Often many different models can lead to the same simulation results, and only one
of them — if at all — is correct. Therefore, simulation can help to falsify a model, but can never
be used to prove a model’s correctness. Nonetheless, the more simulations of a model lead to
predicted results, the higher the probability that the model is indeed correct. This is especially
useful in biology, where modifications can be made to the model in similar manner as to the
real system, for example knockouts, mutations, or cell ablation. Conversely, if a model shows
high reliability, it can be used to make predictions on the outcome of experiments. Therefore
simulation — in silico experiments — can be a helpful supplement and extension to biological
in vivo and in vitro experiments.

2.4. Continuous versus Discrete Simulation

There are two basically different approaches to the simulation of biological or any other sys-
tems. One is the continuous approach. All variables (time, positions, concentrations, etc.) are
real numbers. This approach is well-suited for models where a lot of quantitative data is avail-
able as an input to the model. Examples include models of chemical or enzymatic reactions and
diffusion processes. Continuous models are often formulated as a set of differential equations,
which relate the variables to their rates of change. Numerical integration of the differential
equations allows to make predictions — to simulate — the behaviour of the system.

The other approach is the discrete one. Here, the variables can take only discrete, “quan-
tised” values. The state of the system does not change continuously, but only at specific points
in time, or in regular intervals. A special type of discrete simulation is the event-based sim-
ulation. Simulated entities (cells or molecules, for instance) are not treated as homogeneous
suspensions, but as individual objects. The objects in the simulation generate events, such as
cell division or transcription of a gene. These events of course do not take place continuously,
but after defined time steps. Discrete simulation is suitable for modelling systems where the
overall process is well understood, but little is known about the quantitative details.

2.5. Qualitative versus Quantitative Models

Independent of the type of simulation (continuous or discrete), a choice has to be made con-
cerning the level of abstraction. A quantitative model is directly based on quantitative exper-
imental data. It offers high precision and a very detailed representation of reality. The disad-
vantages of quantitative models are that precise data are required to build the model in the first
place, and that the system must be described by means of mathematical formula that make use
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of the data. For chemical and physical systems, both conditions can be satisfied easily, and
also for biochemical systems. For more complex processes in biology, such as development,
there are too often neither formulas nor quantitative data available.

In contrast, qualitative models represent a high level of abstraction. No exact values for pa-
rameters are required, the model describes only if something happens and not how much of it
happens. Many people argue that qualitative descriptions are superficial, but one must under-
stand the basic properties of the system before a more detailed model can be created. Genetic
networks in their original form (as drawings) are predestined to be modelled qualitatively, as
the arrows do not offer quantitative information on the interactions.



3. The Nematode Caenorhabditis
elegans

Caenorhabditis elegans is a small nematode. In contrast to many of its relatives, it is free-
living and not parasitic. It inhabits the soil and feeds on bacteria. The worm reproduces by
egg-laying. The embryos hatch from the eggs after several hours and undergo four so-called
larval stages before they become fertile adults. The adult worm has a length of about 1 mm.
The egg is approximately 50 um long. There are two sexes, hermaphrodite and male. Dur-
ing embryonic development, both sexes develop almost identically. Reproductive organs are
formed mainly during the larval stages. Development inside the egg takes about 14 hours in
total. The following larval development takes another 50 hours. Adults have a lifespan of about
two weeks (Wood, 1988, p. 1f.).

3.1. C. elegans as a Model Organism

One of the particularities of C. elegans is its invariant cell lineage. In every individual worm
the pattern of cell divisions is identical. This is the reason for the invariant cell number, too:
the adult hermaphrodite has 959 cells, 558 of which are formed inside the egg. The adult
male consists of 1031 cells, 560 of which are formed in the egg. Together with the fact that
the worm is transparent during all developmental stages — even the egg shell is transparent
— this makes C. elegans an ideal object of study. Already at the end of the 19th century,
biologists showed an interest in nematodes as model organisms for their research (see for
example Boveri, 1888). The worm’s breakthrough came when Sydney Brenner decided to use
C. elegans as a model for developmental studies and genetic experiments (Brenner, 1973,
1974; Sulston and Brenner, 1974).

The good observability of the worm led to the accumulation of data, both on molecular and
cellular level. The whole cell lineage of the worm has been analysed and written down, first
manually by Sulston and colleagues (1977,1983), and later by Schnabel et al. (1997) who used
a 4D microscope to record cell positions and divisions semi-automatically.

Since the invention of RNA interference (RNAI) it was possible to specifically inhibit single
genes or mRNA molecules without complex genetic modifications. In the RNAI technique, a
mixture of double-stranded RNAs is injected into the cells and by an unknown mechanism
interferes with translation (Fire et al., 1998).

Because hermaphrodites can fertilize themselves, strains are easy to maintain and mutations
and knockouts easier to obtain than in organisms which cannot reproduce without mating.
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anterior posterior

pronucleus direction of
cytoplasmic flux

Figure 3.1.: The fertilization of the oocyte. The sperm enters the oocyte on one pole, which
becomes the posterior. The oocyte pronucleus occupies the anterior region of the
egg, opposite of the sperm entry point. Directions of cytoplasmic flux are indi-
cated by arrows.

3.2. Steps in Worm Development

Development of the embryo of Caenorhabditis elegans can be divided into several distinct
phases. The first is fertilization of the egg and the generation of polarity. After that, the fate
of the blastomeres, or embryonic founder cells, is specified. This is done under control of
MRNAs and proteins that were deposited in the egg by the mother. In the next step, the mater-
nal proteins activate a group of embryonic transcription factors. Therefore, a transition from
maternally to embryonically transcribed genes takes place . The embryonic genes thus acti-
vated are called organ identity genes. They activate organ-specific structural genes and thus
initiate morphogenesis, which is the last step of embryonic development.

Blastomere fate specification will be treated in detail in chapter 8. The other steps are sum-
marized here.

3.2.1. Establishment of Polarity

The oocyte of the worm is oval-shaped and its contents are symmetrically distributed (in con-
trast to Drosophila, for instance, where maternal mMRNAs are asymmetrically distributed in the
egg even before fertilisation). The oocyte moves along the gonad until it enters the spermathe-
cum where it is met by the sperm. Because the oocyte leaves the gonad tube with one pole first,
the sperm enters at that pole rather than somewhere in the middle of the oocyte (Goldstein and
Hird, 1996). Sperm entry introduces an asymmetry into the oocyte. The pole with the sperm
becomes the posterior end of the zygote and the worm. By mechanisms not fully understood,
a cytoplasmic flux is initiated, where cortical cytoplasm flows to the anterior and in the centre
of the oocyte it flows posteriorly (see figure 3.1). Those components of the cytoplasm that are
to be located posterior are enriched in the posterior end of the egg, probably by fixing to the
posterior cell cortex (Mello et al., 1992). Transport along actin filaments or microtubules plays
a role in the establishment of polarity in the egg, too. This is supported by experiments that
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show that RNAI of actin-binding proteins abolishes polarity. The degradation of mislocated
posterior molecules in the anterior part of the zygote also contributes to the asymmetry.

Once polarity has been established, it needs to be maintained and transduced during later
cell divisions. Many genes have been identified that show an asymmetric distribution in the
fertilized egg and in the early blastomeres, and whose deletion or RNAI leads to an abolish-
ment of the asymmetric distribution of other asymmetrically localized proteins and thereby to
a mis-specification of the fate of the embryonic founder cells and later blastomeres.

Complex interactions regulate the distribution of these asymmetrically localized proteins,
and it is not yet fully understood what the primary actors in these interactions are. A very im-
portant complex is formed by PAR-3, PAR-6 and PKC-3 (Hung and Kemphues, 1999; Joberty
etal., 2000; Tabuse et al., 1998). The MEX proteins seem to be mediators that transduce polar-
ity from the fertilized egg to later stages (Crittenden et al., 1997; Draper et al., 1996; Guedes
and Priess, 1996; Huang et al., 2002; Mello et al., 1992; Schubert et al., 2000). They regulate
the asymmetric distribution of the blastomere fate specification genes.

3.2.2. Determination of Organ Identity

After the fate of the blastomeres has been established, the next step is the determination of
organ identity. In this step, all cells which are precursors of a specific organ — independent
of their clonal origin — start to express organ identity genes. These genes do not convey any
information about the cell or tissue type yet. They merely mark the cell as belonging to a
specific organ. Also, they activate regulatory genes, which are organ-specific and which then
specify the tissue type.

The process of organ identity determination is more difficult to investigate than blastomere
fate specification, because more cells are involved and the cells are smaller. Therefore not so
much information is available. The processes best studied include the specification of endo-
derm or intestine, hypodermis, and pharynx.

3.2.3. Morphogenesis

Once the cells know their fate, structural genes are activated to implement it. The cells change
their shape. They loose the typical spherical shape of the early blastomeres and take on long
(e.g. neurons) or flat (e.g. hypodermis) shapes as required. The cells also take up their function.
The embryo starts to twist as a result of uncontrolled muscle activity, for instance. Because
of this, semi-automated recording of the cell lineage or cell positions is no longer possible.
Some morphogenic events, for example vulval development, take place only after hatching.
Nonetheless, the vulva is one of the best studied organs in the worm.






Part Il.

Materials and Methods

This part is concerned with software. It lists software that supports development or is required
as an external part of the software | developed (materials, see chapter 4). The other chapters are
concerned with the methods: software developed by me and my colleagues to address specific
scientific questions. Chapter 5 describes the software framework which was already existent
in the group and its extensions in which | took part actively. My own project is described
in chapters 6 and 7. Chapter 6 concentrates on the “static” part, the network editor, while
chapter 7 explains the “dynamic” simulation algorithms.

13






4. Software

4.1. Software Used to Support Development

This chapter describes the software that was used for the development of GENE-O-MATIC.

The programming language is JAVA, in the form of the Java 2 Standard Edition Software De-
velopment Kit (J2SE SDK) Version 1.4.2 from Sun Microsystems (Sun Microsystems, 2003a).

The IDE (integrated development environment, the software used to develop software) we
used was IntelliJ Idea, version 1.3 (JetBrains, 2003).

To compile the source code, and to create binary distributions and JAvADoc documentation,
the build tool Ant, version 1.6 (Apache, 2003) was used, which is itself written in JAVA.
Compared to “make”, another build tool, Ant is much easier to configure as the build file is
in XML format. Compilation is much faster if done with Ant. Besides, Ant is fully integrated
into the IntelliJ 1dea development environment. The compiler we used is Jikes (IBM, 2002b),
which is much faster than the javac compiler from Sun.

To manage the source code, track changes, and allow multiple users to work at the code
concurrently, the version control system CVS (Concurrent \ersions System) was used (Ced-
ergvist, 1993).

4.2. JAVA Libraries Used Within CELL-O

The following additional software libraries were used in CELL-O. They are (or were, for JGL)
available free of charge via the internet.

Java Help version 1.1.3 is used for the online help in GENE-O-MATIC.
URL.: http://java.sun.com/products/javahelp/

Java 3D version 1.3.1 is used for the 3D display of the cells during simulation.
URL.: http://java.sun.com/products/java-media/3D/

Java Media Framework (JMF) version 2.1.1 provides methods to create movies of cell
simulations.
URL.: http://java.sun.com/products/java-media/jmf/

JAMA (Java Matrix Package) version 1.0.1 contains mathematical methods for matrix cal-
culation methods. It is applied for the calculation of Voronoi cell shapes and genetic
network simulation.

URL.: http://math.nist.gov/javanumerics/jama/

15
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J-Sim version 0.2 — only one class is used that provides a stream of random numbers for the
simulation.
URL.: http://javasim.ncl.ac.uk/

JGL Libraries version 3.1.0 provides special lists and sets which are used in the event man-
agement in the simulation.
URL.: http://www.recursionsw.com/products/jgl/jgl.asp

NCSA Portfolio version 1.2 is a collection of utility objects to use with Java 3D. It is used
for the 3D cell simulation.
URL.: http://www.ncsa.uiuc.edu/ srp/Java3D/portfolio/

Orbital version 1.1, a library that offers different methods for the treatment and analysis
of logical formulas, is used for the interpretation of Boolean formulas in the genetic
networks.

URL.: http://functologic.com

VisAD is a JAVA component library for interactive and collaborative visualization and anal-
ysis of numerical data. Its methods to calculate the Delaunay triangulation for a set of
points are used in CELL-O.

URL.: http://www.ssec.wisc.edu/ billh/visad.html

Electric XML version 7.1 provides utilities to read and write XML files.
URL.: http://www.themindelectric.com/exml/



5. The CELL-O Framework

The CELL-O framework was developed in the Division Medical and Biological Informatics
at the German Cancer Research Center. Its initial application was the simulation of C. elegans
embryos using a three-dimensional cell model (Gumbel et al., 2000; Gumbel, 2001). The
structure is shown in figure 5.1. The framework is organised in three layers, where the lowest
contains the most general, application-independent code. The middle layer contains biology-
related classes?, and the top layer contains application-specific code. The framework provides
basic classes for setting up a simulation and a hierarchy of classes which represent simulated
objects. Also, there is a hierarchy of classes that represent containers for the simulated objects,
the tissue or “World” that is simulated. Specialized classes for specific simulation purposes,
for example for the worm, were developed.

The application that mainly uses the original part of the framework is called CELL-O-SIMm.
It uses the 3D cell model to simulate cell migration in the C. elegans embryo (Gumbel, 2001).
Another application is ALES, “A Lineage Evaluation Software” that can be used to detect
critical cell divisions where subtrees with different cell fate determinants are created (Braun,
2003; Braun et al., 2003). GENE-O-MATIC, the application described in this thesis, is the
third application in the framework.

The extensions to the framework listed in the next sections represent a joint initiative of all
PhD and diploma students in our group because they are required as a basis for the different
applications.

5.1. Cell Data Management

Ongoing development has led to the design of an interface! hierarchy for dealing with cell
lineages and administrating cell data. These classes and interfaces are located in the package
dkfz.cel ldata. Their relationship is portrayed in figure 5.2. The interfaces represent basic
properties of cells. The most general interface isthe Cel I ldentifier. It provides a method
to get an ID value for the cell. This ID represents the cell’s position in the cell lineage (see
figure 5.3). It is an array of Boolean values (true and false). The first cell in the lineage
has an empty ID. For each division, False or true is appended to the lineage ID of the
mother for the left or right daughter, respectively. In the worm, the left daughter in the lineage
tree represents the anterior, left, or dorsal daughter of a division, while the right cell in the tree
corresponds to the posterior, right, or ventral daughter cell.

If there is more information available about a cell than just the 1D, the interface Cel IDe-
scriptor can be implemented. The getType method can be used to determine the cell’s

For an explanation of the terms “class” and “interface”, see appendix B.
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Figure 5.2.: UML class diagram of the classes for cell data management. The interfaces for
accessing cell data are on the right, while on the left those for writing data into the
objects are shown. The most important classes that implement the interfaces are
in the middle (Basic-and Ful ICel IDescriptor etc.). A short overview of
the UML notation can be found in appendix B.

[empty]

false true

falsefase truefase truetrue
falsetrue
truefasefase true falsetrue

Figure 5.3.: Cell lineage IDs. false indicates the anterior, left, or dorsal daughter cell, and
true indicates the posterior, right, or ventral daughter. The root cell has an empty
lineage ID.
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<<interface>>
Lineage

<<interface>> C <<interface>> t+ getCell(Cellldentifier): CellDescriptor O <<interface>>
CellDescriptor PositionalTree %‘ t+ getCellClass(): Class Classification

i+ getClassifications(): Classification;

BasicLineage

AN

Figure 5.4.: UML class diagram of the data structure for cell lineages. The Lineage con-
tains a PositionalTree which contains the cells (instances of Cel 1De-
scriptor). Via the getCell(Cellldentifier) method one can access
the Cel IDescriptor for any cell to get more information. The BasicTime-
Lineage is an extension of the BasicLineage that contains cells which im-
plement the Cel ITimes interface. It does not provide additional methods.

An overview of the UML notation can be found in appendix B.

type according to a given Classification, for example a cell may have the type “mus-
cle” in the TissueClassification and “intestine” in the OrganClassification.
Not all methods must return useful information: if no long name is available, for example, the
getLongName method may return the short name, too.

Implementing the Cel ITimes, CelIPositions, and Cel 1 Types interfaces indicates
that further specific information about a cell is available (birth- and lifetime, positions, and
changes in cell type, respectively). For each of these interfaces there existsaWritable. ..
interface which specifies the methods required for storing data in the cell object.

The interfaces Cel 1 Types and WritableCel ITypes are of special importance to
GENE-O-MATIC. In contrast to the normal getType method defined in the Cel IDescrip-
tor interface, which assumes that each cell has a specific type which does not change during
the cell’s lifetime, they allow to deal with cell types that change over time, such as genetic
states.

The information about all cells in an organism is stored in a Lineage. The Lineage is
a wrapper for a Tree that contains the cells (Cel IDescriptors) and stores additional in-
formation, for example for which Classifications the cells have type information. The
relationship between the Lineage, the Tree, and the cells within are shown in figure 5.4.

5.2. Cell Model

In the CELL-O framework cells have a spherical representation and thus are parameterized by
their position and size. The position is a point in 3D specifying the centre of the sphere. The
size represents the radius of the sphere.
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Delaunay triangulation

estimated
eggshell _ cell border

measured position
of nucleus

Delaunay triangulationin  C. elegans Restricted Voronoi cellsin - C. elegans

Figure 5.5.: Delaunay triangulation for calculation of cell-cell contacts. A. An arbitrary set of
points and its Delaunay triangulation. The edges of the Delaunay triangles repre-
sent the connectivity between the points. Arrowheads indicate connections which
would not be accepted in CELL-O because the cells are too distant. B. The corre-
sponding Voronoi cells. The cell borders are perpendicular bisectors of the Delau-
nay edges. C. Delaunay triangulation (red) in the 2D projection of the 4-cell stage
C. elegans embryo. The dotted line represents the egg shell, and the approximated
cell shapes are grey circles. The edges show which cells are connected. To pre-
vent unrealistic connections (see arrowheads in A), connections are only accepted
if the distance between the two nuclei is not much larger than the sum of the radii
of the spheres. D. Voronoi cells in C. elegans. Cell size is restricted by the egg
shell. One can see how Voronoi cell borders (red) can also be obtained by con-
necting the intersections of the circles (grey) by which the cells are approximated.
A and B are adapted from Sedgewick (1992, p. 466).
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To calculate cell-cell contacts, the cell shapes are approximated as Voronoi cells (see figure
5.5 B and D). Voronoi cells are areas around so-called Voronoi points, which are the nuclei
positions here. These areas are defined such that each point within a Voronoi cell is closer to
its own cell’s Voronoi point than to the Voronoi point of any other cell. The border between
the two Voronoi cells contains all points that are equally distant from the Voronoi points of
both cells. Another application of Voronoi cells stems from social studies: all people who live
in one Voronoi cell go to the nearest supermarket, i.e. the cell’s Voronoi point. Because for the
genetic network simulation the size of the contact area or the shape of the cells is irrelevant,
and only the question whether there is any contact at all is of interest, the related method
of Delaunay triangulation is used in the calculation (see figure 5.5 A and C). The Delaunay
triangulation of a set of points, for example cell centres, is a collection of edges satisfying
an “empty circle” property: for each edge a circle containing the edge’s endpoints but not
containing any other points can be found. The spheres which represent the cells are the three-
dimensional equivalent of those circles. Cells not connected by a Delaunay edge do not contact
each other. The borders of the Voronoi cells are the perpendicular bisectors of the Delaunay
edges, and only those cells that share a Voronoi cell border are connected by a Delaunay edge.

For the display, spherical cells are used, because their rendering is very fast compared to
more complex shapes. However, if a more exact representation is desired, Voronoi cell shapes
can be displayed.



6. The GENE-O-MATIC Software

This chapter explains the implementation details of the GENE-O-MATIC software. | tried to
keep in mind that many readers of this thesis are no computer scientists, or at least no experts
in JAVA and object-oriented programming. Therefore the concepts have been simplified by
leaving out unnecessary detail, and the chapter contains many examples and figures. For those
who want to use the software to investigate new networks there is a user manual in appendix
A

GENE-O-MATIC was developed as part of the CELL-O framework. It is one of the three
applications that use the framework at the moment. Some classes and methods used by GENE-
O-MATIC are located within the core framework, as in the future other applications may need
them. Also, GENE-O-MATIC makes uses of many functions offered by the framework.

6.1. Networks and Cell Lineages

6.1.1. Graphs as Data Structures

From a computer science point of view, the representations of genetic networks and cell lin-
eages are related. Network structures are called graphs, and cell lineages are trees. A tree is a
special type of graph. First some terms will be defined (adapted from Sedgewick, 1992).

Definition 1 A graph is a set of vertices (or nodes) and edges (see figure 6.1). Vertices are
simple objects that can have a name and other properties (BICs or cells, for example). An edge
IS a connection between two vertices.

Definition 2 A path is a list of subsequent vertices connected by edges. A cycle is a path on
which no vertex occurs twice, except that the first vertex equals the last.

Definition 3 A connected graph is a graph where a path exists between any two of the ver-
tices.

Definition 4 A directed graph is a graph where each edge has a direction. Therefore, two
edges may exist between two vertices A and B: one from A to B, and one from B to A.
Genetic networks are directed graphs.

Definition 5 A connected graph without cycles is called a tree. Usually, trees have directed
edges, from top to bottom. Trees can be used to represent cell lineages.

23
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Connected Graph Cycle Directed Graph Tree
8=
AN\
El

Figure 6.1.: Different types of graphs. The squares with the letters are the vertices, the lines
represent edges. The grey line in the connected graph represents a path from vertex
A to vertex E. The grey vertex in the tree represents the root vertex.

Graphs and trees are of enormous importance in computer science, as they can be used to store
data and to solve different kinds of problems efficiently. Therefore many software libraries
offer methods and algorithms to deal with graphs and trees. However, in this project, the graph
is to be used as a data structure only, not as a basis for complex algorithms. The complexity
of most graph libraries is thus not required. Therefore a simpler structure was developed that
fulfils all requirements of our project but does not require the software developer to busy
himself with the implementation of numerous complex methods which will never be used.

This graph framework consists of three main interfaces: Graph, Vertex, and Edge.
They are located in the dkfz.col lections.graph package. Graph defines 12 meth-
ods, Vertex two, and Edge four (18 in total). In contrast, the Di rectedNet class of IBM’s
Graph Foundation Classes (IBM, 2002a) contains over 200 methods. OPENJGRAPH, an open
source graph library (Salvo, 2002), still specifies 43 methods in its DirectedGraph interface.
These packages offer a lot of convenience methods that make the life of programmers who
write algorithms for graphs a lot easier, but which are not necessary for people who simply
want to use a graph as a data structure for a network. In addition, the possibility to associate
objects with the edges is not available in either of the two frameworks. The reason for this is
probably that most computer science problems are not interested in the edges themselves, but
only in the fact whether there is an edge between two vertices. At most, they allow to define a
weight for the edge, but only as a real number.

For this application, however, it is useful, if not essential, to associate more complex ob-
jects with edges and vertices alike, for example to store literature references that describe the
experiments that led to the discovery of the gene and its interactions. The components of the
graph framework and their relationships are portrayed in figure 6.2.

6.1.2. Graph Methods

The methods defined by the Graph interface are listed in the following paragraphs. The syntax
is as follows:

nmet hodName( Par anet ers): returnVal ue

The first word is the name of the method, followed by method parameters in brackets. After
the colon, the return type is given, in case the method returns a value.
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Figure 6.2.: UML class diagram depicting the relationships of the interfaces and classes in the
graph framework. An overview of the UML notation can be found in appendix B.

Modifying Methods The following methods are required to modify the structure of the
graph, i.e. to add or remove elements. If one tries to add an element which is already part
of the graph, or tries to remove one which does not exist, the methods do nothing and return
Talse to indicate that the graph structure was not modified. If the modification was success-
ful, the methods return true.

add( Edge) : bool ean adds an edge to the graph, and with it the adjacent vertices (de-
pending on the implementation, see below).

add( Vertex): bool ean adds a vertex to the graph.

renmove( Vertex): bool ean removes a vertex from the graph, and with it all adjacent
edges.

renove( Edge) : bool ean removes an edge from the graph.

Information Methods These methods allow the user to get information about the graph
and its structure. Each of these methods return a Collection of edges or vertices.

get FronmEdges(Vertex): Col |l ecti on geta collection of all edges that start at the
given vertex.

get ToEdges(Vertex): Col | ecti on getall edges that point towards a given vertex.

get Adj acent Edges(Vertex): Col | ecti on get all edges which are adjacent to a
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given vertex, i.e. start at that vertex or point towards it. The result equals the union of the
results from the getFromEdges and getToEdges methods.

get Edges(): Col | ecti on getall edges in the graph.

getVertices(): Coll ection getall vertices in the graph.

Other Methods These methods simplify working with the graph, they are not required for
the data structure itself.

addGr aphLi st ener (G aphLi st ener) and

renoveG aphlLi st ener ( GraphLi st ener) can be used to add a listener to the graph.
The graph will inform the listener of any changes that take place, e.g. if a new vertex is added
to the graph. By means of a listener, the graph may be monitored easily.

get GraphFactory(): G aphFact ory givesaccesstoa GraphFactory that can be used
to create new edges and vertices. Some graphs accept only specific types of edge or vertex ob-
jects, and the factory lets the user create these required types conveniently.

Tree-specific Methods These methods are not part of the Graph interface, but are im-
plemented in the TreeGraph class which is an implementation of Graph that behaves like
a tree. Before genetic networks were invented in GENE-O-MATIC, CELL-O already offered
methods and data structures to deal with cell lineage trees (the “tree framework™). It became
apparent that the new graph framework described here was more flexible than the tree frame-
work. Therefore some parts of CELL-O were reimplemented to use the graph framework in-
stead of the tree framework. Nonetheless, the tree framework offers more advanced methods
to deal specifically with cell lineage trees, therefore compatibility between the tree and graph
systems was essential. To support this, the graph system provides some methods which are
similar to methods from the tree framework.

get Root () : Vert ex allows access to the root of a tree, i.e. the only vertex in the tree that
has no edge pointing towards it and from which you can reach all other vertices by following
the directed edges.

fl1ip(Vertex) swapstwo children in a binary tree. In the tree framework’s trees, the order
of the adjacent edges of a vertex is important and can be changed deliberately.

subTree(Vertex): TreeG aph creates a subtree of this tree-like graph with the given
vertex as the root. A similar method is available in the PositionalTree.

get Tree(): Positional Tr ee convertsthistree-like graphintoa PositionalTree.
The PositionalTree is a data type defined in the tree framework, it does not implement
the Graph interface.
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6.1.3. Graph Implementations

The two most common graph implementations are adjacency lists and adjacency matrices.
Figure 6.3 illustrates the different implementations for an example graph (figure 6.3 A).

Adjacency List An adjacency list is a list that contains all vertices in the graph, and each
vertex contains a list of adjacent edges. The edges contain a reference to the next adjacent
vertex (figure 6.3 B). Adjacency lists are useful for sparse graphs with few edges. A drawback
(or feature, depending on the point of view, see below) of the adjacency list is that, if a vertex
is added which is already connected by an edge in another graph (graph 2 in figure 6.4), this
edge, and the vertex at the edge’s other end, and all vertices connected with them, are now also
accessible within the graph if one follows the edges. If the add method is not implemented
correctly, this may lead to an inconsistent state of the graph: Vertex E is not part of the list of
vertices in graph 1, but can be reached via the edges. This can be prevented if the add method
moves through the whole second graph, finds all connected vertices and edges and adds them,
too. However, if the second graph contains cycles, it must be made sure that no vertex is
added twice, and no edge is followed twice in moving through the graph, which makes the
implementation of an adjacency list very complex. This complexity is the drawback of the
adjacency list, the feature is that it is afterwards easy to merge two graphs, but this was not
required in GENE-O-MATIC.

Adjacency Matrix An adjacency matrix (figure 6.3 C) is a square matrix where each field
in the matrix contains the edge between the vertex in the respective column and the vertex in
the respective row. This implementation is useful for graphs with a lot of edges, so-called dense
graphs. One problem with the adjacency matrix is that it is rather complicated to add or remove
vertices, as this requires a modification of the size of the matrix, which is a computationally
expensive operation.

GENE-O-MATIC’s Graph Implementation To avoid the problems with the consistency
of the adjacency list and with resizing of the adjacency matrix, a special graph similar to
an adjacency list was implemented (the GraphImpl, figure 6.3 D). It contains a list of all
vertices, but the vertices do not know about the edges connected to them. So if a vertex is
added, it does not matter if in another graph, an edge is connected to it, because in this graph
nobody will know about it. In addition, the graph contains a list of all edges which know about
their adjacent vertices. Thus, the information about the connectivity has been separated from
the vertices.

Simplified Adjacency List The disadvantage of GENE-O-MATIC’s graph implementa-
tion is that it is very slow to find out which edges are connected to a given vertex, as all edges
in the graph’s edge-list have to be examined to find out. For handling the cell lineages, this
is a serious problem as the number of vertices (cells) may be quite large (959 living cells in
the adult worm, plus the cells which have divided during development) compared to a genetic
network (in the worm database produced during this thesis, there are less than 200 genes).
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Figure 6.3.: Graph implementations. A. An example graph. B. The adjacency list representa-
tion for this graph. C. The adjacency matrix for this graph. D. The implementation
used in GENE-O-MATIC.



6.2. Graphical User Interface 29

Result

Graph 1 Graph 2

add Vertex D
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Figure 6.4.: Adjacency list consistency problem. If vertex D is added to graph 1, the edges and
vertices connected to it become part of graph 1, too, in the sense that they can be
reached by following the edges. But they are not part of the list of all edges if they
are not explicitly added to it.

Therefore a faster implementation was required, and thus an adjacency list was implemented
(ListGraph), with a special extension for trees (TreeGraph). To avoid the consistency
problem, in this implementation it is not allowed to add vertices that have adjacent edges. The
TreeGraph extends the ListGraph only so far as required to conserve a true tree struc-
ture, for example, to avoid circles or multiple root vertices (it overrides the add and remove
methods to get control over how the structure of the graph is modified).

6.2. Graphical User Interface

The graphical user interface (GUI) of GENE-O-MATIC is shown in figure 6.5. It consists of
three parts: the database area, which contains a collection of “reference” genes, the network
area where the user can enter and modify the genetic network, and the cell panel for entering
information about the simulated cells. This section highlights some specific issues of the im-
plementation. A description of the different functions from the user’s point of view is given in
the user manual in appendix A.

6.2.1. Model — View — Controller

Software developers often make use of design patterns for common programming tasks. Thus,
they do not have to develop the software architecture from scratch, but can use mechanisms
other people already applied to solve a specific problem. One of these patterns is called Model-
View-Controller. It is used to program graphical user interfaces (views) that allow a user to
interact with a dataset (model) by means of a controller that detects user actions and relays
them to the view or the model (see figure 6.6).

One advantage of this pattern is that it keeps the data independent from the way it is pre-
sented. Different views could require additional visual information, for example for a genetic
network, the coordinates of the genes on the screen, or the colour of the edges. But if the genes
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Figure 6.5.: Graphical user interface of GENE-O-MATIC. On the right is the database area, on
the left the network area (top) and the panel for the cells (bottom). The toolbars
allow quick access to most GENE-O-MATIC functions.
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Figure 6.6.: The Model-View-Controller design pattern.

are presented in a list, this data would not be required, and instead, some information about
the ordering of the genes in the list may be of interest. Each view must of course be capable
of presenting the data adequately if additional visual information is not available, for instance
by using default or random values.

Another advantage is that the way the user can interact with the data or the view is flexible
and can be changed easily by using a different controller. Neither the data nor the view needs
to know anything about the way user interactions are handled.

Using this pattern, the software developer can concentrate on the best way to represent the
data internally. Then he can develop one or more graphical representations for the data, and
finally the user interaction schemes can be developed.

For GENE-O-MATIC, this pattern is used for the display of the genetic network. The model
consists of implementations of Graph, Edge, Vertex, and the objects inside the edges and
vertices. View and Controller are described in the next paragraphs.

The View Theclassdkfz.collections.graph.view.ViewGraphisthe mostim-
portant component of the view. It extends javax.swing.JPanel and can thus be used
within any type of graphical JAvA application. Via the setModel method the view is told
which model, i.e. which dataset to display. For each vertex and edge in the graph, a view object
is created: ViewVertex and ViewEdge, respectively. A ViewVertex contains informa-
tion about the vertex’s position in the panel. Both ViewVertex and ViewEdge extend the
abstract class De legateShape which implements the interface Java.awt.Shape. The
DelegateShape — as the name implies — delegates all method calls to its internal Shape
object, which is set at the time of painting (see below). The relationship between the differ-
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Figure 6.7.: The Graph: UML class diagram for view and painting. An overview of the UML
notation can be found in appendix B.

ent view classes is shown in figure 6.7. Details of the painting procedure will be explained in
section 6.2.2.b.

The Controller The controller allows the user to modify the model, i.e. to add or remove
edges and vertices, and to manipulate the view, for example to change the size of the display,
the colours, etc. For this it presents the user with popup menus that contain all possible actions.
Some operations affect single objects only, while others influence the whole graph. Therefore
two different popup menus were implemented, one that appears if the user right-clicks on an
object (the ObjectPopup), and one that appears if the user right-clicks on the background
of the graph display (the GraphPopup). In addition, the controller has two states: one for
normal operation, where the view can be modified (e.g. move vertices), and one where the
model can be modified (e.g. add new vertices and edges).

In GENE-O-MATIC, the controller is implemented by the class GraphController in
the package dkfz.col lections.graph.viewand the classes that extend it. There are
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Figure 6.8.: Graph layout and painting. A. network layed out with the RandomNetLay-
outer and painted with the StraightGenePainter. The two arched lines
between GLP1 and GLP_star are painted by the GenePainter. B. Cell lineage
tree layed out with the Cel ITimesLayouter and painted with the Cel I -
Painter. Both images were converted to black-and-white for simplicity.

several controllers available which differ in the possibilities they offer to interact with the
model and the view. For the database, for example, there is a controller that does not offer
possibilities to add or remove BICs or interactions.

6.2.2. Layout and Painting

Laying out a graph is the process of determining the coordinates of the vertices on the drawing
area. Painting is the process of drawing the vertices and edges. Together, layout and painting
determine the visual appearance of a graph. It is useful to distinguish these two functions, as
one may want to keep the layout but select a different painting style, or vice versa.

6.2.2.a. Laying out the graph

There are three different approaches to layout a graph:
» manual: the user determines the positions of the vertices.

* triggered: the user can trigger an automatic calculation of the positions and then manu-
ally improve the arrangement.

* automatic: the computer calculates the positions and the user cannot influence this pro-
cess or change positions later. If new vertices are added, they are automatically assigned
a position.

For the genetic network, it is best to let the user determine the position of the BICs manually.
He can arrange them according to criteria not available to — or not usable by — the software,
for example the biological processes they are involved in. And besides, an automatic layout
may change the network appearance completely after re-loading the network, or after some
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BICs or interactions have been added. This would confuse the user. Therefore no fully auto-
mated layout mechanism has been implemented. However, it is possible to trigger a one-time
rearrangement of the BICs manually, for example to get a good initial layout from which to
start for fine-tuned BIC positions. This so-called RandomNetLayouter starts with a ran-
dom vertex and determines a random position and then arranges all connected vertices on a
grid around it. The next unconnected vertex gets a random position again. This leads to a rel-
atively clear layout that gives a good overview over connected parts of the network (cf. figure
6.8 A). If the network is saved to a file, the positions of the BICs are also stored and of course
re-stored upon loading.

In contrast, for the cell lineage tree an automatic layout mechanism is adequate, because
the tree structure makes it possible to calculate the positions of the cells in a deterministic
manner. Besides, manually laying out 959 cells would be nearly impossible. Depending on
the requirements, different layouters were implemented: TreeLayouter for a quick and
simple display as a tree, where all cells are equidistant, and Cel ITimesLayouter, where
the y axis represents time, i.e. cells born later appear lower in the diagram (cf. figure 6.8 B).

6.2.2.b. Painting

For painting a vertex or an edge, two types of information are used. First, the information in
the object associated with the vertex or edge, for example the BIC or the cell. Second, the
graphical information about the vertex or edge, for instance the coordinates of the vertex, line
width, or text size.

Painting is done by implementations of the Painter interface. There is a base class for
painters, called Defaul tPainter, that can be extended. It provides methods to change the
font, the line width, and the stroke (pattern of the line). It is necessary, or at least useful, to have
different kinds of painters because different types of graphs require different representations.
A genetic network, for example, is quite well represented by simple rectangular genes and
straight lines for the interactions. A cell lineage tree — or any other tree — should have only
horizontal and vertical lines, and the cells could be represented as circles, for example (see
figure 6.8).

While usually one painter is used for all vertices and edges in a graph, it is possible to
use different painters for each single vertex and edge. One example for this is the Gene-
Painter. The normal StraightGenePainter draws straight lines for the interactions
between the BICs in the network. If there are two interactions between two BICs (they in-
fluence each other), straight lines are not useful as both lines would be superimposed. There-
fore, the GenePailnter draws arched lines (see figure 6.8 A, top). Also, if the user wants
to change the colour or font for a single interaction or BIC, this is done by creating a new
instance of the painter which can be configured independently of the other painter instances.

Painting Procedure In its paintComponent method, the ViewGraph calls for each
of the ViewEdges and ViewVertices the paint method of the Painter. The edges
are painted first, and then the vertices, as the boxes of the vertices then hide the ends of
the edge lines. The Painter sets the Shape for the ViewVertices and ViewEdges,



6.3. Data Storage 35

because obviously the shape of an object depends on the way it is painted. Vertices of-
ten get an instance of java.awt.Rectangle as their shape, and edges get instances of
jJava.awt.geom.Line2D, for example.

6.2.3. Generic Editors for Objects — JAVA Beans Customizer

In GENE-O-MATIC, editors are required for many different types of objects, such as genes,
interactions, and cells. It would be a very tedious task to implement editors for each of these
object types manually, as the basic principle is very similar: each property of the object has
a name and needs some kind of editor component, like a text box. JAVA offers a concept for
simple creation of editors for different types of objects. It is based on the assumption that
each object has a set of properties that the user may want to modify. These properties must be
accessible via set and get methods. Such objects are then called beans (Sun Microsystems,
2003c). For simple properties, such as text or numbers, default editor components are defined
(text boxes where the user can enter the value). For more complex properties, such as the
genetic state of a gene, the programmer must write the property editors. To tell JAVA which
property editor to use for the complex properties, a BeanInfo class must be implemented
for the bean. The BeanInfo contains for each property the name of the editor class. Alter-
natively, a Customizer for the whole bean may be specified. The Bean Info also contains
information about which properties shall be shown to the user at all, as there may be some
properties which are to be changed by the software only, and not by the user. And it can offer
descriptions and human-readable names in case the method names in the program are cryptic.

The ORBITAL library for JAvA (Platzer, 2003) contains the Defaul tCustomizer that
creates a Customizer for a bean based on the BeanInfo, or, if that is absent, based on
default property editor components. This was extended to create Customizers that respect
the order of the properties as specified in the Bean I nfo (the default behaviour of JAVA is to
ignore the order, as the information about properties may be integrated from different sources
and thus the order is ambiguous). The resulting class is the OrderedCustomizer. Its dis-
advantage is that it does not consider information from sources other than the Bean I nfo for
the object to edit. Figure 6.9 shows an example of a generated Customizer.

6.3. Data Storage

The problem with storing the data is similar to that with the editors for the objects. To avoid
having to write specific code for storing each type of object, a generic mechanism was imple-
mented. Using reflection (Sun Microsystems, 2003b) it is possible to find out the properties
and their values for any given object at runtime. With the same mechanism it is also possible
to set property values if the name of the property is known.

The classes for writing and reading the objects from a file have two main methods, called
write(Object) and read() : Object. Depending on the specific implementation, the
information what type of object is to be read is either read from the data source (file) itself, or
has to be told to the reading class beforehand.
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Figure 6.9.: Bean customizer and property editor. The figure shows the customizer for objects
of the class BIC. It is generated at runtime by the OrderedCustomizer class.
Each property has its own PropertyEditor, the one for the property name is
indicated. It is a normal text field, which is the default for properties with textual
content (St r i ngs). The PropertyEditor for the description property is a text area,
which is non-standard and has to be specified in the BIC’s BeanlInfo.

To write an object (for example a BIC), the write(Object) method is called with the
object as a parameter. The wr ite method then determines what type of object to write by
calling the object’s getClass() : Class method. The class provides information about
the methods (via the getMethods() : Method][ ] method). For each method in the array,
it is then determined whether it is useful, i.e. if it is the “get” method for a property:

« The name of the method must start with “get”, as defined in the convention for JAVA
beans. For properties of type boo lean, the name must start with “is”, as in “isKnocked-
Out”.

« There must be a corresponding “set” method, because it does not make sense to store
information that cannot be restored.

« The method must not expect parameters, and must return a value (must not have the
return type void).

« The object returned must be of a useful type, this is explained later.

Once the method is analysed as being the “get” method of a property, the value of the property
is determined by invoking the method via reflection:

Object propertyValue = method. invoke(object, null);

This invokes the method for the given object and returns the value the method would return if
you called it normally. null I as the second parameter indicates that the method does not have
any parameters, as is usual for “get” methods.
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The property value can then be written to the file. Two different file formats are available:
one is a simple text file, and the other is an XML file.

6.3.1. Text File

The text file contains one line for each property, and two distinct objects are separated by an
empty line. Property values may not contain newline characters. An example text file is shown
in listing 6.1. The disadvantage is that one file can only contain objects of a single type, and
before loading, the program has to know what type of object it is, because that information is
not stored in the file. Also, if objects within objects are stored, the file becomes very unclear.
Storing objects with a Col lection as a property is not possible.

Listing 6.1 Text file example. A file containing two objects of type BIC is shown. As the file
does not contain any information about the type of object being stored (BIC), the software
must know this before trying to load a file again.

name = genel

description = a test BIC

name = secondGene
description = another gene in the network

For loading, the file is read line by line. New objects are created by using their classes’
newlnstance () method. Property names are determined (the text before the equals sign),
and values are converted from the text in the file to objects of the specified type (most simple
types in JAVA have methods to convert text to the type). The values are set for the new object
by calling the corresponding “set” method via reflection.

Useful types of properties for objects stored in text files are int, double, boolean, and
the other so-called primitive types which are not themselves objects, and the class String
(text). Also, arrays of these types can be written. If specified by the programmer who wrote
the object, other objects may also be stored as properties. This is useful only if these objects
contain properties of useful types themselves.

6.3.2. XML File

XML offers the possibility to group information hierarchically. This allows to store complex
objects that contain other objects. In JAVA, there are already classes that can store objects
in an XML file and re-load them (Java.beans.XMLEncoder and XMLDecoder), but
they can handle only one object per file. For storing complex structures such as graphs, this
is not sufficient because the graph contains different types of objects, such as the objects
inside the edges and vertices and the corresponding visual information. Therefore, a new class
was written to handle XML files: the XMLManager. The file format was adopted from that
generated by the XMLEncoder. An example is shown in listing 6.2.
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Listing 6.2 XML file example. An XML file that contains a LinkedL i st (a special type of
Collection) with two BIC objects.
<object class="java.util_LinkedList">
<void method="add">
<object class="dkfz.cello.genet.BIC">
<void property="name">
<string>genel</string>
</void>
<void property="‘description'>
<string>a test BIC</string>
</void>
</object>
</void>
<void method="add'>
<object class="dkfz.cello.genet.BIC">
<void property="name">
<string>secondGene</string>
</void>
<void property="‘description'>
<string>another gene iIn the network</string>
</void>
</object>
</void>
</object>

The difference to the XMLEncoder is that more than one object, and additional tags, can
be written to a file, and can also be read again. Of course, this requires that at the time of
reading, the program knows what to expect, i.e. how to interpret the additional tags read from
the file.

The XML files are parsed using a SAXParser which is part of the JAVA library. It is really
not a parser, but only a scanner, i.e. it scans through the file and announces all tokens, for
example start tags, character data, and end tags. The XMLManager is the parser which then
interprets the tokens semantically and creates the objects in a process analogous to that for the
text file.

In addition to the property types that are accepted by the text file writer, in the XML file
also properties of type Col lection and Map can be stored. This was achieved by explicitly
defining what to do if the object to be stored is one of these types. The default behaviour, to
determine or set their properties by “get” and “set” method calls does not work because neither
Col lection nor Map are beans, i.e. have properties accessible via “get” and “set” methods.
In the future, the XMLManager can be extended further to implement handling of other types
of objects, such as those which do not have “set” methods but get their property values via the
constructor (“read-only” properties).
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GENE-O-MATIC simulates genetic networks in a multicellular context. The genetic states are
Boolean variables, it is therefore a qualitative simulation method. The time is also discrete,
state changes occur in defined time steps. The next states of the BICs in a cell depend on the
states of the BICs in this cell and in neighbouring cells. Cell positions are continuous variables,
or as good an approximation as the precision of the computer allows.

In this chapter, the simulation algorithms used by GENE-O-MATIC are described. For an
overview of other simulation techniques, refer to chapter 2.

7.1. Simulating the Genetic Network

A biological regulatory network consists of different types of elements, namely genes, mRNAs,
and proteins. Between these, interactions are used to describe the way they influence or reg-
ulate each other. Typically, there are three levels of regulation: transcription (DNA), splicing
and translation (MRNA), and protein activity and degradation (protein). In our model, the three
levels of regulation are treated equally. Genes, mMRNAs, and proteins are jointly called biolo-
gical information carriers (BICs). The three levels may be modelled explicitly by using three
BICs: one BIC for the gene, one for the mRNA, and one for the protein, or implicitly by using
one single BIC that represents gene, mRNA, and protein together. Even complex regulatory
mechanisms can be modelled. Alternative splicing of MRNA can be modelled by using several
BICs for different splice variants, for instance. The same is possible for different states of the
same protein (phosphorylation at different residues, complex formation).

7.1.1. Representation of the Genetic State of a Cell

If a gene is transcribed, its mMRNA translated, and the protein present and active, the corre-
sponding BIC’s state is said to be 1, else, if the gene is not transcribed, the mRNA not cor-
rectly processed, or the protein inactive or not present, the state of the BIC is 0. The genetic
state of a cell is the collection of the states of all BICs in the cell. It can be described by a
vector of values in {0, 1}.

To include cell-cell interactions in the simulation there must be some way that BICs can
influence other BICs not only in their own cell but also in neighbouring cells. Jackson et al.
(1986) describe a technique of dividing a genetic network into an internal and an external part.
In our model, this is represented by BICs that can have different ranges of activity. Some BICs
are internal, their state in a specific cell is relevant only for the calculation of the next state
of the same cell. In contrast, external BICs do not influence the state of their own cell, but
rather that of all neighbouring cells (growth factors or secreted proteins, for instance). BICs
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may also have both internal and external activities. They can then affect the state of their own
cell as well as that of neighbouring cells.

Prior to the calculation of the next state of a cell the states of the adjacent cells have to be
considered to identify potential inter-cellular interactions. This is done in several successive
steps (see also the example on page 41). First, the external state of the cell is determined: the
neighbouring cells are identified (by Delaunay triangulation, see section 5.2) and their states
are collected to form a combined “external” state vector. If in any of the neighbouring cells a
BIC has state 1, its state in the external state vector is set to 1 as well. Else, i.e. if this BIC is
inactive in all surrounding cells, its external state is set to O. In a second step, the new overall
state of the cell is determined by combining external and internal state. A vector is created that
contains for all BICs with internal range their state in the respective cell and for all external
BICs their state from the external state vector. The resulting vector is used for calculation of
the next state for the respective cell.

Setting the Next State of the Cells Only after the next states have been calculated for
all cells, these states will be set. Therefore all cells change their states simultaneously and not
successively. This is important to make sure the model retains its deterministic behaviour in the
cell-cell interactions. If cells would change their states successively one would have to define
which cell changes its state first. In real living cells state changes do not occur as discrete steps
but rather gradually, therefore it would not make sense to model them as successive events.
The state changes in our model occur in regular time intervals. The precise interval length
as well as the time of the first change can be defined by the user. This makes it possible to
co-ordinate state changes with cell data in simulations where cell positions and division times
are taken from a database, as is the case for the C. elegans simulation described in section 8.2.
In the next sections, different methods for calculating the next state are described.

7.1.2. Matrix multiplication

For the matrix calculation technique, the genetic network is treated as a set of interactions
between BICs. Each interaction has a specific strength. Positive strength values indicate acti-
vation, negative values indicate inhibition. The absolute strength can be used to specify that
one interaction has a stronger effect than another, for example an inhibiting interaction with
strength -1 can be outweighed by an activating interaction of strength +2. Though the program
allows interaction strengths to be any real number, integer values are more intuitive and are
sufficient for all tested models and simulations. All interactions together are formulated as an
interaction matrix where each component corresponds to the strength of the influence of the
BIC in the respective column on the BIC in the respective row.

The calculation algorithm is implemented in the MatrixCal culator class. It is based on
a method used by Mendoza and Alvarez-Buylla (1998). They use an asynchronous approach,
i.e. the BICs can change their states successively. GENE-O-MATIC applies a synchronous
approach, where all BICs change states simultaneously. This turned out to be sufficient for the
simulation of C. elegans.

The next state of a cell is obtained by multiplying the interaction matrix with the state
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GLP_star
Threshold: 1.0 0

Figure 7.1.: A small example network. APX-1 is a signalling protein on the cell surface. The
GLP-1 receptor is expressed on neighbouring cells. Upon contact, GLP-1 is split
and a fragment, which we name GLP-1* (GLP_star), moves to the nucleus and
activates transcription of target genes.

ABp

ABa Legend:

B GLP-1
B ArPx-1

Figure 7.2.: Localization of GLP-1 and APX-1 in 4-cell embryos. GLP-1 (grey) is present at
the cortex of ABa and ABp. In Py, APX-1 (black) is present at the border to ABp.

vector of a cell (after combining it with the states of the neighbouring cells). The resulting
vector cannot be used for the new state vector directly as it may contain values other than
O and 1 (e.g. if an interaction strength was larger than 1 or if two interactions activate the
same gene). Therefore it is re-discretized by applying a step function, assigning 1 whenever
the result vector entry is larger than the respective BIC’s threshold, and O if the result vector
entry is smaller than or equal to the BIC’s threshold. The re-discretized vector represents the
next genetic state of the cell. The threshold can be freely defined by the user. An example of a
genetic network and the calculation of the next states is given below.

Calculation Example To illustrate the matrix calculation algorithm, we demonstrate an
example calculation here. The network for ABa vs. ABp specification in C. elegans is used
(see figure 7.1 and sections 8.1.4.a and 8.2.5). The interaction matrix that describes the genetic
network looks like this:

‘ APX-1 GLP-1 GLP-1*
APX-1 0 0 0
GLP-1 0 1 —1
GLP-1* 1 1 2

M =
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Table 7.1.: BIC States

BIC Internal genetic state of State of ABp

ABp ABa EMS P, external calculation-relevant
APX-1 0 0 0 1 1 1 (ext.)
GLP-1 1 1 0 0 1 1 (int)
GLP-1* 0 0 0 0 0 0 (int.)

The field in row GLP-1* and column APX-1 describes the influence that APX-1 has on
GLP-1*, i.e. the strength of the arrow from APX-1 to GLP-1* in figure 7.1.

The cell positions and protein activities at the time of the induction of ABp are shown in
figure 7.2. Because a detailed representation of the distribution of molecules within cells is
not possible in our model, for calculation purposes it is assumed that APX-1 is active in the
whole P, cell. The mathematical description of the states of all BICs in this example is shown
in table 7.1.

Let us assume we want to know the next state in cell ABp. First, ABp’s external state is
determined by finding out which BICs are active in any of the neighbouring cells (of course,
beforehand it is determined which cells are neighbours of ABp, which are all cells in this case).
GLP-1 (in ABa) and APX-1 (in P,) are active (1) in the external state. The external state vector
is determined by the ExternalStateCombiner class. Then the calculation-relevant state
of ABp is determined by combining ABp’s external and internal states in such a way that for all
internal genes (in this case, GLP-1 and GLP-1*) the internal state of ABp and for all external
genes (here, APX-1) the external state of ABp is used. For this, the ExtIntCombiner is
used. The sources of the calculation-relevant states are additionally indicated by “(ext.)” and
“(int.)” behind the states in table 7.1. The calculation-relevant state of ABp is then multiplied
with the interaction matrix M:

00 0 1 01 , 0 0

01 —1 1 =11 |> 0 = 1

11 2 0 2 1 1
interaction matrix calc.-rel. state of ABp thresholds ~ ABp’s new state

After the multiplication, the re-discretization is done by comparing the result with the thresh-
olds and assigning 1 whenever the result is larger than the threshold. The end result is the new
state of cell ABp. Both the multiplication and the re-discretization is done by the Matrix-
Calculator.

The same calculation is done simultaneously for the other cells, after which the new states
are set for all cells at once. The whole process is repeated at every state change time.

7.1.3. Boolean Functions

In this representation, interactions are formulated as Boolean functions. Each BIC is assigned
a Boolean (or logic) function (or formula) that combines all input BICs for that BIC using
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logical operators like AND (&), OR (|), and NOT (). A BIC that is activated by BIC B and
inhibited by BIC C could have a Boolean function that looks like this: B&(1C). Note that no
explicit interactions (**arrows"") are required here, because they are implicit in the formulas.
The BICs from the network in figure 7.1 would have the following Boolean functions if the
same interactions were to be modelled:

BIC Boolean function
APX1 (empty)
GLP1 GLP1

GLP_star (APX1 & GLP1) | GLP_star

To calculate the next state of a cell in this model the Boolean functions for all BICs are eval-
uated, interpreting BICs with state 1 as TRUE and BICs with state O as FALSE. This is done
synchronously, i.e. all functions are evaluated before any new states are actually set. The algo-
rithms for the interpretation of the formulas and for their evaluation are part of the ORBITAL
library for JAvA (Platzer, 2003). The class that applies them to the genetic network is the
LogicCalculator.

7.1.4. Converting Between Matrix and Boolean Network

The matrix representation is a more intuitive description for genetic networks as one can create
a network basically by drawing a picture of it. The Boolean model is available because there
are some special cases that cannot be modelled accurately by the matrix representation without
introducing additional, artificial BICs into the network and without using “Multi-BICs” that
combine the functionality of several sequentially connected BICs (e.g. the Boolean operator
XOR () that means that exactly one of two BICs is on). On the other hand, different-strength
interactions can be modelled only with the matrix but not with the Boolean network. Whether
these special cases are really biologically relevant is a question not to be discussed here.

For convenience, conversion mechanisms between the two models are provided. They do
a near conversion (because as stated above an exact conversion may not be possible). The
user can thus specify part of the network in the Boolean formalism and another part using
the matrix formalism. The program can then combine the information to provide a complete
model in both of these representations. It might also be interesting to see how these models
differ in their behaviour.

7.1.5. Mixed Calculation Method

There is also a calculator that combines hoth calculation modes. For those BICs to which a
Boolean function was assigned, the LogicCalculator is used, and if there is no Boolean
function, the MatrixCalculator is used.

7.2. The Cell Model

Two methods exist in GENE-O-MATIC to model cell behaviour. First, the cell positions can
be taken from a database of recorded (or pre-calculated) positions. The recorded cell positions
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Figure 7.3.: Simulated cell division directions. The mother cell divides along a horizontal line
(1st division). Different rotation angles for the daughters’ division directions with
respect to the mother cell’s division direction are shown: no rotation (0°), 30°
rotation, and division orthogonal (90°) to the mother’s division direction.

for the C. elegans embryo (Schnabel et al., 1997) are an example of such a database. The user
does not need to specify any cell information in the genetic network editor except which cells
are present at the beginning of the simulation and what their genetic states are.

The second possibility is to simulate cell movement and divisions. In this case the user
has to specify position and size of the initial cells. Additionally some information about the
division direction of the cells has to be provided. The division direction of a cell is the direction
of the mitotic spindle, a vector orthogonal to the actual plane along which the daughter cells
separate. The simulation environment assumes that cells divide in a direction orthogonal to
the division direction of their mother, parallel to the division plane of the mother cell. So two
random vectors parallel to the mother cell’s division plane and orthogonal to each other are
calculated as the division directions of the two daughter cells. The division direction vectors
may be rotated if the cell is in a specific genetic state. The rotation angle and the Boolean
function describing this genetic state can be specified by the user. Some examples for default
and modified division directions are shown in figure 7.3. The initial cell (top left) divides along
the horizontal xz-axis. To each of the daughter cells a new axis is assigned which is orthogonal
to the mother’s division direction. If this is not modified, the daughter cells divide in exactly
these directions (90°).

The time of division can be regulated via the genetic network, too. For this purpose a
Boolean formula can be defined that describes the genetic state which triggers a division.

7.2.1. Asymmetric Divisions

A crude mechanism for the simulation of asymmetric cell divisions is included in the cell
representations. For BICs which are to be distributed unequally or asymmetrically upon cell
division, their preferred location has to be specified. This can be done by setting the location
to one of the keywords anterior, posterior, dorsal, ventral, left, or right or to a combination of
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anterior : : posterior

ventral

Figure 7.4.: Determination of localised asymmetric distribution of BICs following a cell divi-
sion. Black dots represent the centres of the daughter cells, the large circle repre-
sents the mother cell, the cross its centre. The mother cell’s radius r is indicated
by the red arrow. The projection of the distance vector onto z-axis (d;) and y-axis
(ds) are shown, the third dimension (z) was left out for simplicity. For compar-
ison, the length of the mother cell’s radius is indicated by dashed red lines next
to the projections d; and d». This division is asymmetrical along the x axis (if a
scaling factor of 1 is assumed), because the distance projection in x direction is
larger than r. It is symmetric along the y axis because d5 is smaller than 7.
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Table 7.2.: Asymmetric distribution of BICs according to their preferred location.

BIC location Associated coordinate axis Cell with BIC activity
anterior X smaller x-value

posterior X larger x-value
dorsal y larger y-value
ventral y smaller y-value
left z larger z-value
right z smaller z-value

these (see also table 7.2). The calculation mechanism is illustrated in figure 7.4. The division
direction vector is the difference d between the positions p and ¢ of the daughter cells. The
i-th component of that vector is its projection onto the i-th coordinate axis: d; = ¢; — p;. It
is then evaluated whether the absolute value of the respective component is sufficiently large
to justify an asymmetric distribution of BICs in that direction. A small deviation along one of
the axes will still result in an uniform distribution of BIC activities. The evaluation is done by
comparing it to the radius r of the mother cell, multiplied by a scaling factor s:

|gi — pi| > s - r = division is asymmetric along axis ¢

The user can change the value of the factor s to adapt the simulation to his specific needs.
If a division has been evaluated to be asymmetric along a specific axis, a lookup in table
7.2 is done to determine for all BICs with a specific preferred location in which of the two
daughter cells the BIC remains active, and in which cell the activity has to be suppressed. In
the example in figure 7.4 a BIC with the preferred location “anterior” which was active in
the mother, will still be active in daughter p (the anterior daughter), and will be set to OFF in
daughter q, the posterior daughter. A BIC with the preferred location “dorsal”” will still be ON
in both daughters because the y component of the division direction vector is not large enough
for the division to be considered asymmetric along the y axis.

7.3. Additional Simulation Parameters

Several additional parameters which have not been mentioned above are available to configure
the behaviour of the simulation.

Calculator Specifies the type of calculator to use for calculating the next state of the cells:
Matrix, Logic, or Mixed

Start time for state changes The time when the first genetic state change occurs, i.e.
when the genetic network starts working. This parameter is available to adjust the ge-
netic network simulation to pre-recorded cell position and division information from a
database.
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State change interval The time between two state changes, i.e. between two calculations
of the next genetic state of all cells. For simulated positions, this can be left unchanged,
but if cell data is taken from a database, larger intervals may be required for synchroni-
sation.

Cell cycle time A time interval after which all cells in the simulation divide. This may be
easier than explicitly using BICs to simulate a cell cycle. A drawback is that all cells
divide synchronously if a cycle time is specified, while with a simulated cell cycle some
cells can divide earlier or more often than others, depending on their genetic state.

Use egg shell constraints For the worm simulation, the “world” that contains the simu-
lated cells provides an egg shell which keeps all cells inside an oval space. This can be
switched off for other simulations.

Consider gene locations If thisis disabled, the BIC locations, as desribed in section 7.2.1,
are not considered and asymmetric divisions are impossible.

Division direction calculation factor If *"consider gene locations' is enabled, the mother
cell radius will be multiplied by this factor to determine the minimum distance two
daughter cells must have in anterior-posterior (or dorsal-ventral or left-right) direction
to distribute BICs asymmetrically in this direction.

Neighbourhood factor To calculate whether two cells are neighbours, their radii are added
and it is checked whether the result is smaller than the distance between the two cell
centres (restricted Delaunay triangulation, cf. figure 5.5 A). As this is sometimes too
strict a measure, the sum of the radii is multiplied by this factor to artificially enlarge
the cells to make sure all intended neighbours are found.






Part lll.

Results

This part contains the scientific results achieved in this thesis. Two models have been studied:
Caenorhabditis elegans and Arabidopsis thaliana. For each of them, known biological data

will be reviewed, a model (genetic network) constructed, and then, simulation results will be
presented.
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8. Blastomere Fate Specification in
C. elegans

Blastomere fate specification in C. elegans is a prime example for a multicellular developmen-
tal process. Apart from intra-cellular signalling cascades (e.g. MAP cascades), interactions
between cells and asymmetric divisions are also part of the regulatory repertoire applied to
determine the embryonic founder cells.

The cell lineage of the early embryo is shown in figure 8.1. The first division of the zygote
and the generation of two different daughter cells is a result of polarity establishment rather
than a first step in blastomere fate specification. Therefore, this chapter will deal only with
those regulatory interactions that happen after the initial division, i. e. beginning with the
two-cell stage. An overview of the whole process is given in figure 8.2.

The specification of blastomere fates is — as is the polarity establishment and transduction
— regulated by maternally provided mRNA and proteins. The embryo can develop without
any own transcription up to the 24-cell stage (Newman-Smith and Rothman, 1998). The ma-
ternal transcription factors set the stage for embryonic expression of tissue and organ identity
genes.

Blastomere fate specification is finished when the fates of the so-called embryonic founder
cells AB, C, D, E, MS, and P, have been specified. This has happened after the division of P,
in the 24-cell stage. However, all specification events except for one are finished in the 12-cell
stage. The only thing that is missing there is the division of P; and therewith birth of P, and
D. This is not discussed here because the mechanism of D vs. P, specification is analogous to
that of C vs. Ps.

Section 8.1 reviews biological data about regulatory interactions during blastomere fate
specification. As there is currently no publication describing the genetic network in its entirety,
data collection was an important part of the thesis. The process of model building — how
biological data is interpreted to create a model of the genetic network which can then be
simulated — is described in section 8.2. The results of the simulation and their relation to
experimental data are listed in section 8.3.

8.1. Experimental Evidence for Regulatory Networks

Blastomere fate specification is one of the best studied processes in embryonic development
of C. elegans. One of the reasons for this is the fact that mutations that disrupt this process
lead to dramatic changes in later development, preventing the analysis of later developmental
stages. Therefore only the early steps in development are easy to study.
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zygote (Pd

AB P

ABa ABp

Figure 8.1.: The early cell lineage of C. elegans. The formation of the six founder cells AB,
E, MS, C, D, and P, is shown.

The genetic network that governs blastomere fate specification is shown in figure 8.3. It has
not been published in this form before, encompassing so many elements and showing the mul-
titude of connections between them. The genes and interactions and the literature references
are listed in tables C.1 and C.2, respectively, in appendix C

8.1.1. Initial Situation

The starting point for blastomere fate specification is the presence of two distinct cells — AB
and P, (see figure 8.2 A). The most important molecules in them are GLP-1 in AB (Evans
et al., 1994) and PIE-1 and P granules in P; (Mello et al., 1996; Strome and Wood, 1983;
Wolf et al., 1983).

PIE-1 asymmetry is a direct result of zygotic polarity. Therefore it will not be discussed here.
The asymmetry in GLP-1 distribution is not the result of an asymmetric distribution of the
MRNA or protein during zygotic polarity establishment. The glp-1 mRNA is distributed ho-
mogeneously in all early embryonic blastomeres. Instead, control happens at the translational
level. The 3’ untranslated region (UTR) of the mMRNA is required for the anterior localization
of the protein (Evans et al., 1994). This mechanism is often found in the regulation of maternal
MRNAs. Of course, many other molecules are present in AB and P;. Their function in blasto-
mere fate specification will be discussed in the next sections where the single blastomeres are
described.

The following paragraphs will shed light onto the molecular regulatory processes that lead
to the specification of the founder cells. The events leading to the specification of single blas-
tomeres will be examined separately, though there are of course interdependencies between
the different specification pathways.
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Figure 8.2.: Overview of blastomere specification. Important regulatory mechanisms are
shown, the names of the proteins involved are given in italics. Different cell types
(in terms of protein activity) are indicated by different colours. A. The 2-cell stage.
B. 3-cell stage. C, D. The 4-cell stage. Cell-autonomous specification of P, fate
by PIE-1, induction of ABp by P, via APX-1. E. Division of AB granddaughters.
F, G. Induction of EMS by P, via MOM-2, followed by asymmetric division of
EMS. H. The 8-cell stage. Specification of P3 vs. C fate by PAL-1 and PIE-1. I.
Induction of ABalp and ABara by MS. For simplicity, the names of the AB grand-
daughters are abbreviated. J. Seven different cell types have been specified. Cell
arrangement as in |.
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8.1.2. Germ Line Specification, P, Cell

The germ line is the part of the worm whose specification is the simplest. It works by a cell-
autonomous process that distributes germ-line specific proteins to the posterior (P, P2, P,
P,) during the first divisions (the cyan cells in figure 8.2). After the third division (that of
P,), a polarity reversal takes place, and the anterior daughter inherits the germ line specify-
ing molecules. In addition, all these divisions are asymmetric also in terms of cell size; the
germ line precursor inherits only 30 to 40% of the mother cell’s volume, while the somatic
daughter gets the remaining 60 to 70%. This mechanism is cell-autonomous, i.e. independent
of any inter-cellular interactions, and works even if all other cells are ablated. The most im-
portant actor in the blastomere fate specification process is the germ line determinant PIE-1.
It is a transcriptional repressor that interferes with RNA polymerase 11 phosphorylation and
thereby totally inhibits embryonic transcription in the cells where PIE-1 is expressed. By this
mechanism, the effect of all other fate-specifying transcription factors is eliminated. The germ
line precursors retain their omnipotent state because they do not express fate-specifying tran-
scription factors that would restrict their developmental potential. After fertilization, PIE-1 is
localized to the posterior half of the zygote (Mello et al., 1992). It remains in the posterior
part of the cells during the following cell divisions. It is therefore distributed to P, P, P53, and
P4, but not to their sister cells (AB, EMS, C, and D, respectively) (Strome and Wood, 1982;
Seydoux and Fire, 1994).

Together with PIE-1, RNA-rich particles called P granules are segregated to the germ line
precursors, as well (Strome and Wood, 1983; Wolf et al., 1983). Their exact function is un-
known, but they contain several components important for blastomere fate specification, e.g.
POS-1 and MEX-1 (Seydoux and Schedl, 2001).

8.1.3. Posterior Blastomeres
8.1.3.a. EMS Cell

SKN-1 is a maternally encoded transcription factor present in EMS and P, but not in AB
and descendants (Bowerman et al., 1993, see figure 8.2 C). It is responsible for specifying the
EMS fate (Bowerman et al., 1992a), and it is prevented from acting in P, because in P, PIE-1
generally inhibits transcription (Mello et al., 1992; Seydoux et al., 1996, see figure 8.2 C). The
initial unequal distribution of SKN-1 (its absence from AB) depends on MEX-1 and PAR-1
(Bowerman et al., 1993), but the exact mechanism is unknown.

Activity of SKN-1 results in activation of the transcription of embryonic genes required for
correct development of the mesendoderm, e.g. med-1 and med-2 (Maduro et al., 2001).

Another protein present in EMS is POP-1. The joint action of SKN-1 and POP-1 determine
the fate of EMS, and also of its anterior daughter MS, as mesodermal precursors (see below).

8.1.3.b. E Cell

E is the posterior daughter of EMS. It is different from MS, the anterior daughter, due to
an inductive signal sent by P, before division (see figure 8.2 F). The signalling mechanism
uses MOM-2, a protein homologous to mammalian Wnt and Drosophila Wingless (Thorpe
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Figure 8.3.: Blastomere specification network. Pointed arrows represent activating interac-
tions, while arrows with cross bars represent inhibition. GLP1_LAG1_SEL8 and
LIT1_WRML1 are protein complexes, spindle_.EMS means the rotation of the spin-
dle in EMS. The references for all elements of the network are given in table C.1
in the appendix.
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et al., 1997; Rocheleau et al., 1997). The receptor, in agreement with this, is the Frizzled
homolog MOM-5 (Thorpe et al., 1997; Rocheleau et al., 1997). In P, MOM-1, a Porcupine
homolog, is required for correct processing and secretion of MOM-2, the signal. This has not
been determined experimentally, but is a conclusion based on sequence homology with the
Drosophila proteins (Thorpe et al., 1997; Rocheleau et al., 1997). MOM-1 and MOM-2 are
expressed exclusively in Py, but in no other cell at the four-cell stage, alas, it is not known how
this is achieved. A possible explanation would be the association of their mMRNAs with the P
granules.

MOM-3 is another protein required in P, for successful Wnt signalling (Thorpe et al., 1997;
Rocheleau et al., 1997). Its function is unknown, which is why there are no interactions in-
volving MOM-3 in figure 8.3.

The receptor MOM-5 relays the signal in EMS via GSK-3, as it is called because of its

homology to human GSK-3 (5 (Schlesinger et al., 1999). Here, the pathway splits up, be-
cause GSK-3 is not only involved in the specification of the fate of the posterior half of EMS,
but is also responsible for regulating spindle orientation in EMS (Schlesinger et al., 1999).
Components of the Wnt pathway that act downstream of GSK-3 have no influence on spindle
orientation in EMS. How GSK-3 influences spindle orientation has not been elucidated yet.
From GSK-3, the signal is passed to WRM-1, an armadillo/3-catenin homolog (Rocheleau
et al., 1997). WRM-1 forms a complex with the Nemo-like kinase LIT-1, a MAPK?!. At this
point, an integration with a MAPK cascade takes place: the MAPKK? or MEK® MOM-4 also
acts on LIT-1. Functional MOM-4 is required for the Wnt signal (Thorpe et al., 1997), but the
reason is unknown.
LIT-1 is activated by interaction with WRM-1 and undergoes auto-phosphorylation to fur-
ther enhance its interaction with WRM-1. LIT-1, or the LIT-1-WRM-1 complex, deactivate
POP-1. POP-1 is a TCF/LEF-like (T cell factor/lymphoid enhancer factor) transcription factor
with a HMG (high mobility group) domain (Lin et al., 1995). It is responsible for many, if not
all anterior-posterior fate decisions in embryonic development, and an asymmetry in POP-1
distribution can be detected in the daughters of most such divisions (Lin et al., 1998). High
concentrations of POP-1 can be detected in the nuclei of anterior daughters, and only low con-
centrations in posterior nuclei. How it happens that inactive POP-1 in the posterior does not
show up in immunofluorescence staining and thus seems to have disappeared in the posterior
daughters is unknown.

POP-1 is required maternally as well as zygotically, and the two functions are independent
from each other because a mutation that shows maternal-effect lethality and defects in pharynx
development leaves the embryonic function of POP-1 unimpaired (Lin et al., 1998).

To summarize: E is different from its sister MS because it does not contain active POP-1
protein (figure 8.2 G). The presence of SKN-1 as the only active transcription factor in E
results in E’s adoption of endodermal fate; the E cell is the immediate precursor of all intestinal
cells of the worm.

Imitogen-activated protein kinase
2MAPK Kkinase
SMAPK/ERK kinase, ERK is a special MAPK in humans
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8.1.3.c. MS Cell

MS is the anterior daughter of EMS. Its fate is not different from EMS in terms of transcription
factor activity, i.e. SKN-1 and POP-1 are both present and active. POP-1 specifies mesodermal
versus endodermal fate (Lin et al., 1995) and is the basis for the different developmental
potential of E and MS. SKN-1 and POP-1 together specify mesodermal cell fate (Thorpe
etal., 1997, see figure 8.2 G). Therefore, MS does not adopt an endodermal fate, but becomes
a mesodermal precursor instead.

8.1.3.d. C Cell

The C cell is defined by activity of PAL-1 (figure 8.2 H). PAL-1 is a maternal transcription
factor that activates muscle-specific structural genes such as vab-7 (Ahringer, 1997). By sev-
eral different mechanisms, PAL-1 activity is directed to the C cell and its descendants. pal-1
mMRNA is present in both initial cells in the embryo. MEX-3, which is present in AB only,
inhibits pal-1 mRNA translation. It has been proposed that SMG-3 causes the degradation
of untranslated pal-1 mRNA, because pal-1 mRNA degradation depends on smg-3 function
(Hunter and Kenyon, 1996). SMGs are proteins involved in the degradation of abnormal or
truncated mMRNAs (Pulak and Anderson, 1993). Though SMG-3 is also present in the poste-
rior, pal-1 mRNA is degraded only in the anterior, because its translation is inhibited only
there. Because of this mechanism, PAL-1 protein exists only in the posterior half, i.e. in Py,
EMS and P, etc.

In EMS and descendants, PAL-1 is inhibited in a SKN-1-dependent manner (Hunter and
Kenyon, 1996). Maduro and colleagues report that not SKN-1 itself, but END-1 and/or END-3,
two GATA transcription factors activated by SKN-1, may be responsible for PAL-1 inhibition
(Maduro et al., 2001).

In P,, the effect of PAL-1 activity (transcription of muscle-specific genes) is prevented because
the presence of PIE-1 blocks all transcription. The same holds true for P5. In C, however, a
lack of any inhibiting factors allows PAL-1 to exercise its function and to activate transcription
of muscle-specific genes such as vab-7 (Hunter and Kenyon, 1996).

8.1.4. Anterior Blastomeres
8.1.4.a. ABa versus ABp

ABa and ABp initially have the same developmental potential, since the division of AB is
absolutely symmetric (Sulston et al., 1983, see figure 8.2 B). In the four-cell stage, however,
an inductive signal emanating from P, distinguishes ABp from ABa, driving ABp to adopt a
dorsal fate (figure 8.2 D). The signal uses a pathway homologous to the Notch/Delta/Serrate
pathway in Drosophila.

The ligand involved here is the Delta-homolog APX-1, a protein expressed in P; at the
border to ABa and ABp, and later in P, at the border to ABp (Mickey et al., 1996), see also
figure 7.2. The mRNA is present in all blastomeres (Mickey et al., 1996). How the localized
expression is achieved is unknown.
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The membrane-bound receptor on ABp is the Notch-homologue GLP-1 (Mello et al., 1994).
Its MRNA is present in all blastomeres, but it is translated only in AB and its descendants.
This is due to a regulatory mechanism that involves the 3° UTR in the glp-1 mRNA (Evans
et al., 1994). Upon contact with APX-1, GLP-1 is split and the cytosolic part migrates to the
nucleus. At least, this is how the pathway works in other organisms (Schroeter et al., 1998;
Struhl and Adachi, 1998). On its way, it binds to SEL-8. SEL-8 (also called LAG-3) is a
transcriptional activator that has no DNA-binding capabilities (Petcherski and Kimble, 2000).
Therefore, to activate transcription, interaction with DNA-binding proteins is required. LAG-1
is a transcription factor (Christensen et al., 1996) that is bound to the promotor of SEL-8 target
genes all the time (Petcherski and Kimble, 2000). It recruits the fragment of GLP-1 and with
it SEL-8 which is bound to that fragment. The ternary complex binds to the DNA and enables
SEL-8 to activate the transcription of target genes (Petcherski and Kimble, 2000). ABa is not
induced although it expresses GLP-1, since it is not in direct contact with P, and therefore
cannot receive the signal.

Because the promotor of glp-1 contains LAG-1 binding sites, it has been proposed that a
positive feedback loop exists for this signalling pathway (Christensen et al., 1996). But as
blastomere fate specification does not require embryonic transcription, the relevance of the
feedback loop for this process is questionable. It may have more impact later in development
with lin-12, another Notch-homolog that also has LAG-1 binding sites in its promotor.

8.1.4.b. Pharynx Induction in AB Granddaughters

Without interference, four of the AB granddaughters would produce mainly hypodermis and
four of them would produce neuronal tissue. However, two of them, ABalp and ABara, are
induced by a signal from MS to produce pharyngeal cells instead (Priess and Thomson, 1987;
Hutter and Schnabel, 1994, see figure 8.2 I). Therefore, neurons and hypodermis are each
produced by only three AB granddaughters (Sulston et al., 1983). Strictly speaking, this in-
duction is not part of the specification of the embryonic founder cells. However, as this event
takes place even before all founder cells are born — namely, at the 12-cell stage, with D and
P, still missing — it was included it in this description. Also, the mechanism is well studied.

The induction works similar to that of ABp by P,: it also involves a Notch/Delta pathway,
and the receptor is the same as in the specification of ABa vs. ABp: GLP-1 (Mello et al., 1994).
The Delta-homolog involved has not been identified yet. For obvious reasons it is clear that
APX-1 is not involved: beginning with the 8-cell stage, its mMRNA is degraded in all somatic
blastomeres, therefore it is simply not present in MS (Mickey et al., 1996).

Experiments by Hutter and Schnabel (1994) have established the fact that only MS is re-
quired for this induction. Therefore, the signalling protein must be expressed in MS, but not
in any other blastomere that is in contact with AB descendants at the time of signalling. In
spite of this rather exact description, it has not been possible to identify the Delta homolog
unambiguously yet. Possible candidates are LAG-2 or ARG-1, which are the only other Delta
homologs described in C. elegans (Henderson et al., 1994; Fitzgerald and Greenwald, 1995).
Other homologs can be predicted from the genome sequence, but they have not been veri-
fied. However, the presence of either LAG-2 or ARG-1 in MS and their requirement for the
induction still remain to be verified, too.
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Two interesting questions emerge: first, how is expression of the signalling Delta homolog
restricted to the MS cell, and second, why do only two of the AB descendants react to the
signal?

The answer to the second question is relatively simple. Of the ABa descendants, only ABalp
and ABara are in contact with MS at the time of signalling. And the ABp descendants have
probably lost the ability to react because they have previously been induced to become dorsal
cells (see section 8.1.4.a).

The answer to the first question is more complex. The obvious solution is to assume that the
Delta homolog is activated by a mechanism specific to MS. As far as the genes and proteins
described so far are concerned, this could only be done by POP-1 or by a joint action of SKN-1
and POP-1. But Lin and colleagues (1995) observed that the induction is normal in POP-1
mutants. In contrast, SKN-1 activity in MS is required for the induction (Mello et al., 1994).
Because SKN-1 is a transcription factor, and because destruction of DNA in MS prevents the
induction (Mello et al., 1994), the regulation of the induction probably involves embryonic
transcription.
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8.2. Translating the Regulatory Network into a
Computer Model

In this section, the translation of the genetic network described in the previous section is ex-
plained. Generally, this is a rather straightforward process. However, some adaptations and
modifications were necessary to compensate for the limited capabilities of the simulation soft-
ware. Also, interaction strengths and BIC activity threshold values needed to be defined. Not
all BICs described in the previous sections have been included in the model. For long sig-
nalling cascades such as the Wnt pathway, and for complex mechanisms such as the transcrip-
tion activation by a ternary complex including GLP-1, simplifications were made and BICs
left out.

E and MS cell fates
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Figure 8.4.: Model of the genetic network regulating blastomere fate specification. For those
BICs with a special location, the location is typed below the BIC name. Also, if
a BIC’s threshold is not zero, this is indicated. External BICs are highlighted in
orange. The frames indicate the modules of the network. The dashed rectangle
contains the module for the specification of anterior cell fates, the dotted line that
for posterior blastomere fates. The solid line indicates the module for E vs. MS
specification. The BICs which are not part of any module can fulfil their function
correctly only if all other modules are present.
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Table 8.1.: The parts of the network.

BIC location rangeof  threshold initial state
activity inAB inP;
PIE-1 posterior internal 0 0 1
SKN-1 internal 0 0 1
pal-1 mRNA internal 0 0 1
PAL-1 internal 0 0 0
mom-1 mRNA posterior internal 0 0 1
MOM-1 internal 0 0 0
MOM-2 external 0 0 0
pop-1 mMRNA internal 0 0 1
POP-1 internal 0 0 0
APX-1 posterior external 0 0 1
GLP-1 internal 0 1 0
GLP-1* internal 1 0 0
Mediator internal 1 0 0
Delta external 0 0 0

As indicated in figure 8.4, the modelled genetic network consists of several modules. Each
module can be simulated separately and is necessary and sufficient to cause a specific subset of
the observed developmental effects. Two main modules can be distinguished: BICs for anterior
cell fates (APX-1, GLP-1, GLP-1%*), and BICs for posterior cell fates (PIE-1, SKN-1, pal-1
MRNA, PAL-1, mom-1 mRNA, MOM-1, MOM-2, pop-1 mRNA, POP-1). The module for
the posterior cell fates can be further divided into sub-modules. PIE-1 is a central element for
the fate determination of the posterior cells. Two BICs (Mediator and Delta) form a bridge via
which the two main modules interact. The modular architecture of the network became evident
during the modelling process. It turned out to simplify the modelling considerably, as each
module of the whole network could be optimized for correct simulation results separately. The
following paragraphs name the BICs and the interactions found to be important and explain
how they were incorporated into the model. Details about the BICs and their states in the two
initial cells are given in tables 8.1 and 8.2.

8.2.1. PIE-1

PIE-1 is the protein responsible for germ line specification (see section 8.1.2). To make sure it
becomes distributed to the germ line precursor cells in our model, it was assigned the location
“posterior”. Its initial state was set to 1 in the P, cell and to O in the AB cell to represent its ini-
tially asymmetric distribution. PIE-1 is responsible for suppressing embryonic transcription in
the germ line precursors, thus specifying their identity. By totally suppressing transcription, it
impedes the activity of the transcriptional activators POP-1, SKN-1, and PAL-1. Therefore we
introduced inhibiting interactions from PIE-1 to these proteins into our model. To keep PIE-1
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Table 8.2.: Biological meaning of BICs. This table explains the meaning of the BICs and
which parts from the real worm they represent.

BIC If state is 1, this means that ...

PIE-1 PIE-1 protein is present and active and inhibits transcription by pro-
moting RNA Pol-I1 phosphorylation.

SKN-1 SKN-1 protein is present and active and generally, transcription
takes place, so that it can really effect something (i.e. its function
Is not made useless by PIE-1).

pal-1 mRNA pal-1 mRNA is present and being translated.

PAL-1 analogous to SKN-1.

mom-1 mRNA mom-1 mRNA is present and being translated.

MOM-1 MOM-1 protein is present and active, helping MOM-2 secretion.

MOM-2 MOM-2 protein is present and being secreted.

pop-1 mMRNA pop-1 mRNA is present and being translated.

POP-1 analogous to SKN-1.

APX-1 APX-1 protein is present and active on the cell surface, ready to
signal.

GLP-1 GLP-1 protein is present in the cell membrane, ready to receive sig-
nals.

GLP-1* GLP-1 protein is active, i.e. it has been split and the fragment moved
to the nucleus to activate transcription of target genes.

Mediator a protein responsible for the activation of Delta is present and active.

Delta analogous to APX-1.
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active, the model requires a self-activating interaction from PIE-1 to itself; this is not based
on experimental data but is a requirement for the modelling mechanism. Otherwise, PIE-1
would switch off again after one step. the self-activating interaction ensures PIE-1 remains
active unless it is inhibited by some other BIC. For a detailed explanation of the calculation
mechanism, see section 7.1.2.

8.2.2. SKN-1

SKN-1 is represented in our model with an initial state of 1 in Py, and O in AB. The inactivity
in the presence of PIE-1 is modelled by an inhibiting interaction from PIE-1 to SKN-1. The
target genes of SKN-1 have not been modelled explicitly because the identity of the blastomere
is specified already by SKN-1 activity. SKN-1 is an antagonist to PAL-1, which is also a
transcriptional activator, and thus an inhibiting interaction from SKN-1 to PAL-1 is included
(see also section 8.2.3). SKN-1 remains active (unless explicitly inhibited), represented by a
self-activating interaction.

8.2.3. PAL-1

The complex mechanism by which PAL-1 protein is directed to the P, cell and removed from
AB was not explicitly modelled. Instead, pal-1 mRNA activity was simply set to O in AB and
to 1 in P;. SKN-1 and PIE-1 influence PAL-1 activity negatively — even if SKN-1 does not
do so directly, see section 8.1.3.d (Maduro et al., 2001) — therefore inhibiting interactions
from SKN-1 and PIE-1 to PAL-1 are included in our model.

8.2.4. Wnt Pathway

Of the Wnt signalling cascade, only the BICs mom-1 mRNA, MOM-1, MOM-2, pop-1
MRNA, and POP-1 are incorporated. MOM-2 acts directly on POP-1 here. The other BICs
(MOM-3, MOM-5, GSK-3, WRM-1, and LIT-1) were left out because their presence would
not have altered the outcome, i.e. the inhibition of POP-1, as they do only pass on the signal.

MOM-1 and MOM-2 are expressed in Py, but not in any other cell. This is modelled by
assigning a posterior location to mom-1 mRNA (the other BICs become active only in cells
with mom-1 mRNA activity and therefore need no specific location). As it is not necessary
(and would even lead to undesired results, see section 8.3.3) that MOM-1 and MOM-2 remain
active for a long time, no self-activating interactions are provided for any of these BICs.

Biological observations show that POP-1 is present in the nuclei of all blastomeres in the
4-cell-stage (Lin et al., 1995). As no data exist about POP-1 influence on blastomere specifi-
cation in ABa and ABp, | decided to ignore its presence there and to constrain it to P; and its
descendants. This was done by introducing pop-1 mRNA, with the initial state O in AB and 1
in P1. The mRNA “activates” the protein POP-1. As a transcription factor, POP-1 cannot act
in cells where PIE-1 inhibits all transcription, therefore an inhibiting interaction from PIE-1
to POP-1 was introduced into the network model. Once active, POP-1 will remain active until
it is inhibited, so a self-activating interaction was provided for POP-1.
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8.2.5. Notch Pathway for ABa vs. ABp Distinction

To make sure APX-1 is active only in germ-line precursors (and not in EMS, where it would
erroneously induce ABa), it was assigned a posterior location (similar to PIE-1), and its initial
state issetto O in AB, and to 1 in P;. It was made an external gene, as its biological function is
to transmit signals from one cell to another. As APX-1 cannot be detected after the 8-cell stage,
there was no need to make sure the protein remains active, so no self-activating mechanism
was modelled.

GLP-1 is translated only in AB and descendants. Thus it was assigned the state 1 in AB,
but O in P;. In contrast to APX-1, GLP-1 activity is required later in the embryo, too, for the
signal given to the ABa granddaughters, (Mello et al., 1994). Therefore we included a self-
activating interaction for GLP-1. GLP-1* represents the intra-cellular fragment that is created
by proteolytic cleavage of GLP-1 upon contact with APX-1. This fragment migrates to the
nucleus to activate gene transcription. Creation of this fragment requires both the presence of
GLP-1 and the activity of APX-1, and to model this, the threshold for GLP-1* was set to 1
(which ensures it becomes active only if the combined activating influence is larger than 1, i.e.
if both APX-1 and GLP-1 are active). Once activated, we wanted GLP-1* to remain active (as
a proxy for the genes to be activated by GLP-1* which are not known yet), thus we introduced
a self-activating interaction. This needs a strength of 2 to overcome the higher threshold. Upon
splitting of GLP-1, the membrane-bound form becomes deactivated (it cannot be split twice),
thus GLP-1* deactivates GLP-1. GLP-1* is initially off in both cells (state O).

8.2.6. Notch Pathway for Pharynx Induction in AB
Granddaughters

The not-yet-identified Delta homolog responsible for the induction of ABara and ABalp is
represented by the BIC Delta. It is activated — via a mediator BIC — by joint action of
SKN-1 and POP-1. A threshold of 1 and activating interactions from both of the proteins to
the mediator guarantee that its activity is restrained to MS since a threshold of 1 means it can
be activated only by joint action of both proteins, which occurs only in MS. This mechanism
is in contrast to biological observations stating that pharynx induction in AB descendants is
normal in pop-1 mutants and therefore is independent of POP-1 (Lin et al., 1995). However,
no POP-1-independent possibility to constrain the activity of the Delta-homologue to MS was
found for this model. This is an example how experiments in the computer can help identify
critical points in the data gathered by laboratory experiments.

The mediator BIC is required for correct timing; because the state changes occur in regular
time intervals, without the mediator the signal would reach the AB descendants one time step
too early, when the four granddaughters have not yet divided. The mediator therefore is not
really part of the signalling mechanism, it is merely an emulation for temporal effects in the
simulation.

Delta is, like APX-1, an external protein. Delta activates GLP-1* in neighbouring cells with
GLP-1 activity, applying the same mechanism as that used with APX-1.
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8.2.7. Parameters for the Simulation

Above, the genetic network used in the simulation was described. Now the other simulation
parameters will be listed shortly to allow other users to reproduce the results.

Cell positions and division times were taken from a database of recorded positions (Schn-
abel et al., 1997). The calculator for the next state was the matrix calculator. Start time for
state changes was 19.5 minutes, and the interval between two state changes was 10.5 min-
utes. Thus, state changes occur at 19.5, 30, 40.5, and 51 minutes. It is crucial to have a state
change between 39 and 42.5 minutes, after EMS divides and before P2 does, to simulate the
induction of asymmetry in EMS. The simulation was observed closely up to 52 minutes, and
the cell lineages were recorded for up to 70 minutes. Egg shell constraints were applied. The
BIC locations are used, so assymetric divisions are possible. All other parameters were left
unchanged from the default values.

8.3. Simulation Results

As mentioned already, the modules of the network can be simulated independent of each other.
While creating the network each module was tested separately. After that, the network was
simulated as a whole. The results are described in the following paragraphs, and an overview
of the results is given in fig. 8.5.

8.3.1. Germ Line: PIE-1

A network containing only PIE-1 produces a worm where all cells are genetically identical
except for Py, then later P, and Ps. In these germ line precursors the simulation correctly
generates PIE-1 activity while at the same time PIE-1 is inactive in all other cells. Due to
constraints of the model, it is not yet possible to simulate the correct distribution of PIE-1 into
the P, cell: the P, cell is created somewhat anterior of the D cell according to the published
position dataset (Schnabel et al., 1997). This results in PIE-1 — as a posteriorly located BIC
— being distributed to D instead of P, upon division of P5. A graphical representation of the
simulated activity of PIE-1 during embryonic development is shown in figure 8.6 A.

8.3.2. Posterior Blastomeres

SKN-1 is active from the beginning. Upon division of Py it is equally distributed to both
daughter cells. When the first state change occurs, it is switched off in P, (by PIE-1) while it
remains active in EMS, thus determining EMS identity (see figure 8.6 A).

pal-1 mRNA is present in all P; descendants, but the protein is active only in C and its
descendants, because this is the only place with neither SKN-1 nor PIE-1 activity. This exper-
imental observation (Hunter and Kenyon, 1996) is accurately reproduced in our model (see
figure 8.6 B).
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SKN-1 []GLP-1 GLP-1* (pharynx) PAL-1
PIE-1 GLP-1* SKN-1, POP-1 I other

Figure 8.5.: Snapshots of simulation results. The screenshots from the simulation at different
stages are shown. Colours indicate different protein activities. A comparison with
figure 8.2 reveals a good agreement between the simulation results and real pro-
tein expression patterns, with the exception of the division of EMS (F and G). A.
The beginning of the simulation, 0 minutes. B. After the division of AB, 17 min-
utes. C. Division of P, 18 minutes. D. After the first state change, 19.5 minutes.
E. After the second state change (nothing happened), and after division of AB
descendants, 35 minutes. F. After division of EMS, 39 minutes. Note that in the
simulation, MS divides symmetrically, in contrast to reality (cf.figure 8.2 F,.G) G.
After the next state change, 40.5 minutes, the asymmetry of the two MS daughters
is restored. H. After division of P2, 42.5 minutes. I. After division of AB descen-
dants, 50 minutes. J. After the next state change, seven different cell types have
been generated. End of the simulation at 51.5 minutes.
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8.3.3. EMS Asymmetry

P, sends a signal to EMS to induce asymmetry in EMS. This results in an asymmetric division
of EMS. Because our model does not support inhomogeneous cells, the signal cannot be sent
before division of EMS. If it were sent beforehand, POP-1 would be switched off in the whole
EMS cell, resulting in no POP-1 activity in either E or MS, which would contradict biological
evidence (Thorpe et al., 1997).

mom-1 mRNA is distributed to P,, but not to EMS, because of its posterior location in
the model. In P, it leads to activity of MOM-1 and thereby activity of MOM-2. Immediately
after the division of EMS, P, is located in such a way that it contacts only E but not MS.
This constellation results in an E-specific deactivation of POP-1 through the externally acting
protein MOM-2, as observed in experiments (Thorpe et al., 1997).

Since pop-1 mRNA is not continuously active (no self-activating interaction) POP-1 does
not get re-activated in E descendants when contact with a MOM-2 expressing cell is lost.
Biologically, this effect may be attributed to the fact that in reality inactive POP-1 is degraded
in E (Lin et al., 1995). The simulated pattern of POP-1 activity is shown in figure 8.6 B.

8.3.4. ABp/ABa Asymmetry

Due to the spatial arrangement of the cells in the simulation and the time constraints on APX-1
activity there is only one contact between a GLP-1 expressing and an APX-1 expressing cell:
between ABp and P,. Therefore only ABp is induced and not ABa (see figure 8.6 A). GLP-1*
remains active in ABp and prevents further GLP-1 activity. This ensures that ABp descendants
do not react to the later signal from MS (see below). The induction of asymmetry between ABa
and ABp is therefore reproduced correctly.

8.3.5. Pharynx Induction in AB Granddaughters

As the BICs responsible for sending a signal from MS to ABa granddaughters have not yet
been detected experimentally, | have “invented” a Delta homologue. It is activated in MS by
joint action of POP-1 and SKN-1. Delta successfully activates GLP-1* in ABalp and ABara
(see figure 8.6 C). After this induction, ABara and ABalp are genetically identical with the
ABp descendants that have been induced by the first Notch signal. A hitherto unknown mech-
anism is used in the embryo to interpret GLP-1* activity differently in these two groups of
cells.

If the simulation is allowed to continue further (beyond the induction of ABara and ABalp),
other ABa descendants are also induced because they come into contact with MS or MS de-
scendants. This is in contrast to biological observations. Perhaps in the worm, later activity of
the Delta homolog is prevented by timely degradation of the maternal mRNA coding for that
protein, or by degradation of GLP-1, the receptor, in the target cells. This is another example
where the simulation shows results that suggest further experimental studies to explain the
effect observed in silico.
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Figure 8.6.: Simulated expression patterns. Basic colours are red, green, and blue. Combina-
tion colours (yellow, turquoise) indicate combined expression of several proteins,
as if the cells were stained with fluorescent dyes. Black cells do not contain any
active BICs. The length of the bars represents the lifetime of the cells. The im-
ages are screenshots from the Cell lineage view of GENE-O-MATIC. A.
Simulated expression of SKN-1 (green) and PIE-1 (red). B. Simulated activity
resp. presence of POP-1 (blue), pal-1 mRNA (green), and PAL-1 (red). C. APX-1
(blue), GLP-1 (green), and GLP-1* (red).



8.4. Summary 69

8.4. Summary

In general, the simulation results of the simplified genetic network for blastomere specifica-
tion match experimental results quite well. The simulation runs completely analogous to real
development up to the 22-cell stage. It thereby generates six different cell types (or seven, if
the ABp descendants and the ABa descendants induced to produce pharynx are considered
different). Via BICs with external range of activity (for example ligands) all inductive inter-
actions occurring in the embryo up to that stage have been reconstructed. This leads to two
statements: first, GENE-O-MATIC is obviously suitable for simulation of cell differentiation
in multicellular organisms, and second, the genetic network used is correct in the sense that it
is good enough to reproduce reality.

Some aspects of the modelling and simulation process are worthy of a more detailed dis-
cussion, which will be done in section 11.1.2.






9. Flower development in
Arabidopsis thaliana

Some of the simulations of flower development in Arabidopsis thaliana were performed in
cooperation with Aitor Gonzalez, a postgraduate biologist. The purpose was to prove the ap-
plicability of GENE-O-MATIC under the following conditions:

« simulation of models where no cell positions are known
» for other organisms than C. elegans

« if the user is a biologist who is not a computer expert and who has no knowledge of the
internals of GENE-O-MATIC.

Also, the application of the program by another person than the developer often leads to the
exposure of bugs and of inconveniences in the graphical user interface and thus is an important
means to test and improve software.

9.1. Biological Background

Flower development in Arabidopsis thaliana was chosen because it is a very well known
process. Extensive experimental and some computational work has led to a well characterized
genetic network controlling this process.

The aerial parts of higher plants develop from the apical meristem. This is a group of stem
cells at the tip of the shoot. The apical meristem identity defines two main phases of plant life,
a vegetative and a reproductive phase (Poethig, 1990). The apical meristem during vegetative
phase is called shoot apical meristem (SAM) and is characterized by slow growth of the shoot
and production of leaf primordia. The leafs are arranged in a rosette (see figure 9.1 A, B). At
a certain point the SAM transforms into an inflorescence meristem (IM) and the reproductive
phase starts. The IM is characterized by fast shoot growth and the production of inflorescence
primordia (see figure 9.1 C, D). The inflorescence primordia give rise to twigs branching
from the main shoot. At the top of each twig there is again an IM. Later arising inflorescence
primordia develop into flower primordia with a floral meristem (FM) that gives rise to the
floral organs (see figure 9.1 E). The transformation of the SAM into an IM is promoted by
different environmental and endogenous signals (Howell, 1998b). Other endogenous signals
later trigger the transformation of an IM into an FM. In contrast to the SAM and IM, the FM
is determined and cannot grow indefinitely. Each FM gives rise to a single flower.

The model described here focuses on stem cell maintenance in the shoot apical meristem.
Further simulation results are described in Gonzélez (2002).
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Figure 9.1.: Phase changes in Arabidopsis thaliana (adapted from Kieffer and Davies, 2001).
A, B. During the vegetative stage leaf primordia are formed by the SAM, which
then grow to form leafs. C. When the SAM transforms into an 1M, shoot growth
increases and inflorescence primordia are formed in addition to leaf primordia. D,
E. Finally the IMs transform into FMs that are determinate and form flowers.
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Cell Description Active Genes
L1 represents the CLV 3-expressing region in the SAM. intCLV3

L2, L3 dividing stem cells

oC the organising centre, region of WUS expression intwus, wus
P1, P2 the region around the OC where CLV1 is expressed intCLV1, CLV1

Table 9.1.: Cells in the SAM maintenance simulation.

9.2. Stem Cell Maintenance in the SAM

The shoot apical meristem contains pluripotent stem cells that divide and are responsible for
the growth of a plant. To maintain the meristem, the loss of stem cells due to organ differen-
tiation at the sides and cell replenishment by stem cell division have to be tightly regulated.
The structure of the shoot apical meristem is shown in figure 9.2. WUS (WUSCHEL ) is ex-
pressed below the tip in a group of cells called the organising centre (OC). It activates CLV3
(CLAVATA 3) expression in the overlying cells. This signal specifies them as stem cells. CLV3
is secreted into the extracellular space (Fletcher et al., 1999) and diffuses downward. It has a
negative influence on WUS activity (Schoof et al., 2000). Stem cells divide continuously so
that there is a flow of cells and CLV3 through the organizing centre. Therefore there has to
be a mechanism that inactivates CLV3 before the cells enter the OC, because otherwise CLV3
would inhibit WUS there and thus destroy the OC. Cells in and around the OC express CLV1
(CLAVATA 1) on their surface. CLV1 has been proposed to form a receptor complex together
with CLV2 (CLAVATA 3) which can bind and inactivate CLV3 (Trotochaud et al., 1999). On
its way towards the OC, CLV3 is bound by excess CLV1 and thus prevented from inactivating
WUS. The negative feedback loop between WUS and CLV3 is one of the main mechanisms
for maintaining the correct cell number in the SAM (Haecker and Laux, 2001; Sharma and
Fletcher, 2002).

The genetic network that was used to simulate this process is shown in figure 9.3. WUS’s
and CLV 3’s ability to move between cells is represented by making them external BICs which
can influence BICs in neighbouring cells. A drawback of the modelling environment is that
it does not support long range signals as would be required here to model WUS and CLV3
diffusion appropriately. The “int” BICs (with internal range of activity) intCLV1, intCLV3,
and intWUS, and their activating influence on CLV1, CLV3, and WUS, respectively, make sure
the (externally acting) BICs CLV1, CLV3, and WUS remain constantly active (the normal self-
activating interaction mechanism cannot be used for external BICs). The activating interaction
from WUS to CLV3 was omitted from the model and instead intCLV3 was set to “active”
in the L1 cell which represents the whole area of CLV3 expression. CLV2 does not have a
function in the model, it is present only to indicate the receptor complex. Table 9.1 shows the
initial cells and their genetic states.

Cell positions and division information could not be taken from a database because there
is no such database for Arabidopsis. Therefore initial cell positions were defined such that
the cell arrangement represents the position of different tissues in the SAM. Cell division is
regulated by the genetic network, the Boolean formula defining the state is D1V, so cells divide
whenever DIV becomes active. L2 and L3 are the only cells that will divide; in all other cells,
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Figure 9.2.: Regulation of the maintenance of the SAM (after Haecker and Laux, 2001;
Sharma and Fletcher, 2002). The apical stem cells in the central zone of the SAM
express CLV3 (blue). This is induced by WUS which moves from the organis-
ing centre (OC, yellow) upwards. CLV3 itself diffuses downwards and represses
WUS expression in L3. Because WUS is required in the OC, CLV3 is caught by
binding to the CLV1-CLV?2 receptor complex which is expressed in the L3 area
(green) around the OC. Bound CLV3 cannot inactivate WUS any more. The fast-
dividing cells in the shoot apex move towards the rib zone (red arrow) through the
OC. OC identity and position is probably maintained by signals from surrounding
cells at the periphery (not shown).

Figure 9.3.: Genetic network for the simulation of SAM maintenance.
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Figure 9.4.: Simulation results for SAM maintenance. A. 3D view. Stem cells (L2 and L3)
divide rapidly, and the new cells move toward the organizing centre where WUS
is expressed (red). CLV3 (blue) is inactivated in these cells through the influence
of CLV1 which is expressed in the neighbouring cells (green). Yellow indicates
joint expression of WUS and CLV1. In the grey cells, none of the BICs is active.
B. Cell lineage. Arrowheads in the cell lineage indicate spontaneous (i.e. non-
clonal) expression or non-expression of WUS or CLV3.
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no element of the “cell cycle” (CDK1, CDK2, DIV) is active. The initial division direction for
L2 and L3 was set to be vertical, along the y axis to mimic vertical growth of the meristem.

The results of the simulation are shown in figure 9.4. In the cell lineage drawing it can
be seen that cell fate is not dependent on clonal origin, but on the surroundings: In some
sublineages, WUS or CLV 3 expression starts or ends abruptly (arrowheads in figure 9.4 B).
In figure 9.4 A one can see that CLV1 prevents CLV3 activity in the cells adjacent to P1 and
P2. Also, the negative effect of CLV3 on WUS is apparent as the central cells adjacent to
CLV 3-expressing cells do not display WUS activity.

9.3. Conclusions

The concordance of experimental and simulated results demonstrates that the genetic network
and the cell arrangement used in this simulation is an adequate representation of reality.

The simulations performed in Arabidopsis thaliana, the one described here as well as the
others described by Gonzalez (2002) have shown that GENE-O-MATIC can be used to model
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reality also under difficult conditions:
» where no cell positions are known, but only a rough approximation is possible
« if the user has no prior experience in the usage of such programs

Some problems do exist, though. As there is no way to model long-range signals or the
diffusion of molecules between cells, it is difficult to create a working model. And some such
interactions, in the example described here the activation of CLV3 by WUS, had to be left
out of the simulation so that they not disturb the results or lead to experimentally unobserved
phenomena. Therefore, an extension of GENE-O-MATIC that offers the possibility of free
and/or regulated diffusion between cells would be highly desirable. A model for diffusion
within single cells has already been implemented by a diploma student under my guidance
(Billewitz, 2003), and it is planned to extend it to inter-cellular diffusion in the near future.

During the setup of the Arabidopsis thaliana simulations it became obvious that though the
program can in principle be used, there are several ways to further enhance the convenience.
One of these, which was duly implemented, is the genetic state table that allows to monitor
the states of all BICs in all cells simultaneously, not as a (sometimes difficult to interpret)
colour pattern, but in a table. Another example is the feature that the user can trigger cell
divisions during the simulation by clicking on the cells in the 3D display. This allows for a
quick determination of the correct division time, which can then later be programmed into the
simulation by means of cell cycle genes.



Part |V.
Discussion

In this part of the thesis, the strengths and weaknesses of the approach taken in GENE-O-
MATIC are described. It is compared to other modelling and simulation software, and the
results achieved with GENE-O-MATIC are be analysed regarding their value for the scientific
community. Finally, a short chapter summarises the contents.
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10. GENE-O-MATIC as a Network
Database

The network editor of GENE-O-MATIC is in itself a useful tool. It allows to collect data about
genes, proteins, and interactions and represents them graphically. Though there are many gene
and protein databases available on the internet (DIP, 2003; Apweiler, 2003; WormBase, 2000),
very few of them offer graphical representations of the interactions the molecules are involved
in. And even then, this is often a static picture which cannot be modified by the user (KEGG,
2003). The databases often contain only a very small part of all available information, be-
cause data is gathered by high-throughput techniques faster than it can be entered into curated
databases. Therefore many experimentalists to whom GENE-O-MATIC was shown on confer-
ences were happy to see a tool that will allow them to create and maintain their own database.

The advantages of having a graphical, visual representation rather than a text-based database,
are manifold:

* It is much easier to get a good overview over a process if it is represented as a picture: a
picture is worth a thousand words.

» Missing elements, be it interactions or BICs, become apparent simply because there is
a gap in the drawing.

* It is much easier to compare two regulatory networks visually than comparing their
textual descriptions, especially if similar genes in different organisms have totally dif-
ferent names. Therefore, a graphical display is an aid in the identification of analogous
pathways in different or related organisms, or in different processes.

* It can help with the identification of developmental or regulatory modules: genes that
belong to one module will probably be closer together in the drawing than those which
are involved in distinct processes.

To strengthen this aspect of GENE-O-MATIC, a direct link to the internet database WORM-
BASE (WormBase, 2000) has been implemented, allowing quick access to more information
on worm genes. In the future it is planned to further enhance this functionality and make
possible access to databases for other organisms, too. In addition, it is planned to implement
automated network search algorithms that can collect gene and protein interaction data for a
given organism directly from the internet. This will greatly facilitate and accelerate the process
of network creation.
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11. Simulation Methodology

This chapter discusses pros and cons of the simulation methods in GENE-O-MATIC.

11.1. Tissue Simulation

11.1.1. Interweaving of Network and Cell Simulation

One of the main features that distinguishes GENE-O-MATIC from other genetic network sim-
ulation and analysis software is the integration with three-dimensional cell simulation. Each
cell maintains its own genetic state independently of the other cells, although they all use the
same genetic network. This represents the fact that all cells in an organism contain the same
DNA, but may exhibit different gene expression patterns. The presence of multiple cells alone
is not really new: computer scientist have long known the concept of cellular automata. The
following definition was taken from an online dictionary (Webnox Corp., 2000-2003):

[A cellular automaton] is a regular spatial lattice of “cells”, each of which can
have any one of a finite number of states. The state of all cells in the lattice are
updated simultaneously and the state of the entire lattice advances in discrete time
steps. The state of each cell in the lattice is updated according to a local rule which
may depend on the state of the cell and its neighbours at the previous time step.

Each cell in a cellular automaton could be considered to be a finite state machine
which takes its neighbours’ states as input and outputs its own state.

In GENE-O-MATIC, the rules according to which the states of the cells are updated are given
by the genetic network. The difference between GENE-O-MATIC and a cellular automaton
is that in GENE-O-MATIC cells are not arranged on a regular spatial lattice. And GENE-O-
MATIC’s cells can move and multiply.

This is also the main difference to those other genetic network simulation tools that of-
fer multicellular simulation: their cells do neither move nor divide. As the aim of GENE-O-
MATIC was the simulation of developmental processes, the ability to simulate divisions, which
are an inherent part of every developmental process, was crucial to the success of the project.

Inter-cellular interactions are very important for cell differentiation because cell-
autonomous mechanisms alone are not powerful enough to direct the formation of many dis-
tinct cell types. Environmental conditions are most important for the specification of cell fates,
and many cell determination events in C. elegans as well as in Arabidopsis could not take place
if there was no inter-cellular signalling. GENE-O-MATIC is not the first nor the only program
that can simulate cell differentiation, but it is definitely the first that combines a flexible cell
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estimated cell border
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Figure 11.1.: Difference between estimated (black) and real (grey) cell position in C. elegans
if the nucleus is not in the cell centre.

model including cell movement and division with the simulation of genetic networks to create
a tool for the simulation of network-directed cell-cell interactions in developmental processes
such as cell differentiation.

11.1.2. Cell Shape and Position

Compared to other cell and tissue models, GENE-O-MATIC’s cell model lacks one important
feature: a detailed representation of the cell shape or surface is not possible. Instead, cells are
approximated as spheres around a central point. \oronoi cells, which at first sight seem to be
a better approximation of the cell shape, do not solve this problem, as the Voronoi cell border
between two cells is identical with the plane defined by the intersection of the two spheres
by which the cells are approximated (cf. figure 5.5 on page 21). As for the determination of
the neighbours of a cell only the connectivity between the cells is important — if they have a
common border — and not their shape, the lack of a detailed cell shape representation does
not hinder a successful simulation.

For the simulation of the early embryo of C. elegans, this problem is further aggravated by
the fact that the assumption that the measured positions of the cell nuclei correspond to the
centre of the cell is not always true. Often the nucleus can be dislocated to one side of the
cell. In that case, the spherical, and also the Voronoi approximation of the cell will appear
shifted compared to the real cell position (see figure 11.1). The reason for this inaccurate
description of cell positions in measured data is that the actual location of the cell membranes,
which would be needed for precise determination of cell neighbourhood relations, cannot be
recorded easily because the exact membrane position in the images would have to be marked
manually — automatic detection by the computer is not even possible for the position of the
nuclei which are characterised by prominent grey circles in the images. Already the manual
marking of the nuclei, where only a single spot has to be marked for each nucleus in the
developing worm, takes ages.

It is probably due to these drawbacks that the simulation of blastomere fate specification in
C. elegans shows a severe sensitivity to changes in state change times because some cell-cell
contacts are established only for very short periods of time. For the simulation to produce the
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correct results it is therefore very important to tune the times of state changes to the recorded
cell positions, i.e. a state change has to occur exactly when the cells do make the correct
contacts. An example for such a problematic induction is the Notch signal sent from MS to
exactly two ABa descendants. The induction takes place at approximately 50 minutes of sim-
ulated embryonic development. Around that time, not only ABalp and ABara, but also ABarp
are very close to MS, and there is only a short time span where MS is not in contact with
ABarp. That contact would result in inappropriate activation of GLP-1* in ABarp. Since it is
highly unlikely that worm development relies on such a narrow time frame, this problematic
effect is likely an artefact resulting from imprecise cell position measurements or, more prob-
ably, incorrectly calculated cell shapes: the assumption that the nucleus is in the cell centre is
wrong.

The problem is restricted to simulations that use recorded cell positions with very specific
inductive interactions between the cells. For more general simulations of whole tissues (col-
lections of cells) this becomes irrelevant. This is demonstrated satisfactorily in the simulation
of Arabidopsis thaliana flower development, where whole tissues contact each other and in-
ductions do not depend on specific cell-cell interactions, and also in simulations of vulval
development in C. elegans, which were performed by Rolf Lohaus, a Diploma student, under
my guidance (Lohaus, 2003).

11.1.3. Localisation of Intracellular Compounds

GENE-O-MATIC is not yet capable of a detailed representation of inhomogeneous molecule
distributions within single cells, such as the C. elegans zygote after polarity establishment. The
asymmetric distribution of a compound can only be specified generally via the BIC’s preferred
location, but cannot be modelled on a per-cell basis. And BICs cannot influence other BICs’
locations. There are two biological processes where this problem occurs:

» Molecules move by themselves into one half of the cell, or they are fixed or fix them-
selves to specific locations in the cell (cell-autonomous).

* Induction by a signal (external or internal) affects only a spatially distinct population of
molecules in the target cell.

Some workarounds employed to compensate for the inadequacy of the modelling environ-
ment are listed here. To model the initial asymmetry in the worm zygote, the simulation had
to be started with two different cells (AB and P,) instead of one single cell with an inhomo-
geneous distribution of cell contents (P,). Another example is the induction of an asymmetry
in EMS and the following asymmetric division; in the simulation these two events occur in
reverse order compared to the real embryo to achieve the desired result.

An extension of GENE-O-MATIC with a more detailed representation of the cell interior
and a direction for cell polarity has been implemented (Billewitz et al., 2002; Billewitz, 2003),
however it does not yet provide cell-cell interactions and thus was not used in this thesis.

Another aspect also due to inadequate representation of intra-cellular asymmetry is the mis-
localisation of PIE-1 at the division of P5 in the worm simulation. In the embryo, the divisions
of P, and P5 are controlled via a different mechanism than those of P, and P, (Guo and
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Kemphues, 1996a). This leads to a polarity reversal and changed division directions, and thus
to the fact that the germ line precursor P, is generated as the anterior daughter of P5;. Because
the model used for describing the BICs in the computer does not allow polarity reversals,
I.e. changes in the preferred location of BICs, PIE-1 — having the location “posterior” — is
mislocated to the D cell. As a result, PAL-1 activity does not occur in D, but in P, instead, i.e.
the two cells switched their fate.

The concept of a mitotic spindle controlling the cell division direction, and that the orienta-
tion of the spindle can be influenced by the genetic network, is already in the queue, but could
not yet be implemented due to time constraints.

11.1.4. Long-Range Signals and Morphogen Gradients

GENE-O-MATIC does not support long-range signals. It assumes that signals are propagated
from one cell to the neighbours. Therefore, neither diffusion of molecules through the ex-
tracellular space (where they can also reach non-neighbouring cells) nor the establishment
of a gradient of a substance throughout the whole organism can be modelled. This is a dis-
advantage, as in many multicellular organisms, long-range signals play an important role in
the regulation of cell division and other cellular processes. Whole tissues are regulated that
way, for example by hormones and growth factors. Because of this drawback, classical de-
velopmental model organisms such as Drosophila (Struhl, 1989) and hydra (Meinhardt and
Gierer, 1974) cannot be modelled with GENE-O-MATIC. The Drosophila embryo develops
as a syncytium, and only after more than ten cell divisions cell walls are made. The cell types
are specified by morphogen gradients, which are initialized by asymmetries in the oocyte and
stabilized and expanded in the syncytium. In hydra, morphogen gradients form over the whole
organism in a self-emerging pattern starting from small asymmetries.

Even for cellular models, long-range signals cannot be modelled. Aitor Gonzalez, who cre-
ated most of the Arabidopsis simulations, complained that the diffusion of molecules from
one cell into the surrounding tissue or extra-cellular matrix (ECM) cannot be modelled. The
concept of plasmodesmata, channels that link plant cells and allow the movement of larger
molecules such as proteins between the cells, is not available in GENE-O-MATIC, either. It is
clear that this is a major downside of the cell-based modelling concept in GENE-O-MATIC.
As flexibility and independence from specific model organisms are among the main goals
of GENE-O-MATIC, the implementation of an ECM-like structure surrounding the cells is
one of the priorities in future development of GENE-O-MATIC. However, because different
processes like embryonic development of C. elegans, vulval development of C. elegans, and
flower development in Arabidopsis could indeed by simulated realistically in spite of missing
long-range signals, GENE-O-MATIC is already much more flexible than most other multicel-
lular modelling tools.

11.2. Network Simulation

There are two main approaches to the simulation of biological networks: qualitative and quan-
titative. GENE-O-MATIC makes use of the qualitative approach. The question “Which is the
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better method?” is an ongoing reason for discussion and has not yet been — and in my opin-
ion cannot be — answered satisfactorily. It always depends on the requirements and conditions
under which a simulation is to be performed. The computational model has to be tuned to the
biological circumstances. If nature allows to measure lots of parameters, concentrations, rate
constants, etc., there is no reason why one should not use a quantitative model, if every pa-
rameter in the model is backed by some measured experimental value. In contrast, it does not
make sense to apply a quantitative model if there is no data on which it could be based. In that
case, the fewer parameters a model requires to generate realistic results, the better, because
then fewer values have to be guessed or even chosen arbitrarily.

For processes like transcriptional regulation, quantitative, especially continuous models do
not provide a big advantage compared to qualitative models. The reason is that transcription
is really a Boolean process: either a gene is transcribed, or it is not. The “most quantitative”
case, the diplont, has two copies of gene, so there are three possible states: zero, one, or two
transcribed genes. But this does not really sanctify the use of a quantitative model.

The same is true for cell differentiation. No matter what the gene expression patterns within
a cell are, the cell either adopts a specific type or it does not (i.e. it adopts another type). There
are no cells which are half muscle and half neuron. Of course, there are so-called “weak”
mutations that interfere partially with the formation of a specific type of cells, so that the
organism has fewer or more cells of that type than would be normal. But this does not change
the fact that each of the missing resp. superfluous cells definitely belongs to a specific cell
type.

As mentioned already, it may be difficult to acquire the amount of data necessary for a plau-
sible quantitative model. In the C. elegans embryo, this is indeed the case. The techniques
most often used, and on whose results the simulation described here is based, are purely qual-
itative: immunofluorescence or GFP-tagging, and microscopic observations. Cell differentia-
tion in development is never a process well suited for mass acquisition of data: microarrays are
useless because differences in the expression patterns from single cells need to be assessed.

Therefore GENE-O-MATIC was initially designed for qualitative simulations only. Since is
was obvious from the beginning, however, that sooner or later one would like to do quantitative
simulations as well, the software was designed for a high degree of flexibility and extensibility
that will allow the later addition of quantitative calculators.

11.3. In Silico Experiments

Computer simulation becomes a simple and cheap alternative to “real” experiments. Especially
in the area of metabolic networks, computational models of metabolic pathways help biolo-
gists to design organisms which will be better suited to solve a specific task, for example yeasts
for beer brewing or bacteria for the production of yogurt (see Wiechert (2002) for a review).
The effect of mutations or overexpression of genes can be tested much quicker and cheaper
than would be possible in an in vitro or worse, in vivo experiment. The reason why in silico
experiments are much more popular for metabolic than for developmental regulation is that it
IS easy to measure reaction rates and substrate concentrations in vitro, therefore much more
and detailed data is available than for developmental processes. Thus the models are much
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more accurate and the predictions made with their help are more reliable. Also, biochemists
are used to Kinetic, quantitative models, while geneticists and developmental biologists are not
(yet).

This picture is changing, however. Recently, more developmental models and simulations
are being published. GENE-O-MATIC is one of the tools available for that. It offers several
experimental techniques which are also available for in vivo and in vitro experiments:

Knockouts. Without modifying the original network structure (“wildtype™, the reference
network) knockout mutants can be analyzed quickly. This has been done for several
genes in the blastomere fate specification network, and the simulation results show a
significant concordance with the corresponding in vivo knockouts, especially if consid-
ering the fact that cell positions and divisions in the simulation cannot change in the
in silico mutants as they would in the in vivo mutant because they are defined in the
database.

Overexpression or ectopic expression of genes can be simulated by setting genes to
be active from the beginning, and by providing self-activating interactions which will
prevent them from being switched off.

Cell ablation is possible for those simulations which are not based on a cell position
database. Cells can be ablated from the beginning, or later during the simulation. Thus
specific inductive interactions can be prevented and the resulting alterations in develop-
ment be observed. This has been tested successfully in simulations of vulval develop-
ment (Lohaus, 2003).

All these methods are independent of the specific organism or system which is modelled and
simulated. GENE-O-MATIC — in contrast to many simulation programs which are written
only for a specific application — offers high flexibility in the modelling environment and is
applicable to all organisms with cellular development. It is capable of simulating well-defined
developmental processes even in large organisms, if only specific parts, such as single organs,
of the organism are considered.

GENE-O-MATIC therefore provides a choice of experimental techniques that are also used
by biologists in in vitro experiments. They do not have to accustom themselves to new meth-
ods. GENE-O-MATIc fulfils the requirements to become a powerful tool for in silico experi-
ments, aiding experimentalists in the design of new in vitro and in vivo experiments.

Mutant analysis can also help to support or disprove hypotheses on how regulatory mecha-
nisms function: if the in silico mutant behaves like the in vivo mutant, this adds evidence to the
validity of the network, while a mismatch in experimental and simulated result of a mutation
indicates inconsistencies in the model.



12. Benefits of Computational
Analysis and Simulation

Computer simulation in biology suffers from the same phenomenon as any other predictive
tool, or any clairvoyant: if something is foretold which is already known, nobody will be
impressed because everybody says “but we knew that already”, and if something is predicted
which is yet unknown, nobody will be impressed, either, because “we do not know if it really
is true”. Thankfully, in computational biology some people are impressed even if nothing new
was achieved, but only existing, known results reproduced.

After a short overview of the model-building process, | will therefore discuss the value of
GENE-O-MATIC as a tool for the analysis of existing data. Then I will show what additional
information can be gained by computer simulation which would not be available from ex-
perimental data alone, and the advantages this may bring for researchers. This will include a
discussion of the results obtained in the worm simulation.

12.1. Building the Model

The modelling process itself often is the first step to a better understanding of a biological
phenomenon. It promotes a detailed understanding of each single element of the model. In
creating the model for C. elegans blastomere fate specification, | started with a single protein,
PIE-1, and gradually added the other proteins and mRNAs, going back a step whenever the
results did not match experimental observations. Which molecules can be left out, because
they would unnecessarily complicate the model without bringing real new information? What
is the best way to model protein complex formation or proteolytic cleavage that transforms
one protein into another with a different function?

Though the possibility to get answers to these questions looks promising, it must be said that
building a model is a complicated procedure that already requires a lot of knowledge from the
start. One cannot simply copy a drawing somebody else has made of the process in question.
Often, genes need to be grouped into one, and other genes need to be left out, to get correct
simulation results. Some improvement concerning these issues are planned for the future (see
chapter 13), but until then, the user will have to make up for the inadequacies of the modelling
environment by means of creative thinking.

The disadvantage of having to put a lot of knowledge into model-building is that there is
probably not much left to be discovered if enough data is available to build a working model.
This will be discussed in detail in section 12.3.
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12.2. Analysis of Existing Data

What can be gained from a simulation that merely reproduces reality? If a model has been set
up based on experimental data, and if the simulation of that model produces results which are
consistent with the data, this is an affirmation of the correctness of the model. Unfortunately,
simulation can never produce proof — there may be different possibilities to achieve the given
results which are all consistent with the data, and there is no way to tell which one is the
one that Nature took to solve the problem. Nonetheless, a working, functional model gives a
strong hint that the current model really is the correct one, because otherwise most probably
inconsistencies or errors would have occurred.

To be able to make predictions, first, a realistic' model has to be created, thus a simulation
that reproduces reality is the first step towards a simulation that makes predictions.

If it is not possible to set up a realistic simulation, this is valuable information, too: it tells
us that some crucial element of the model must be missing or that the model is otherwise
erroneous. The specific difference between simulation and experimental results may also give
hints as to where the error may be, and what experiments need to be performed to collect
missing data. Instead of being in the dark, experimentalists can direct their research efforts to
promising targets in the first place.

12.3. Predictive Power

The predictive power of simulation results may be smaller than expected because a lot of a
priori knowledge is required to build a model. Nonetheless, many interesting new insights can
be gained by a simulation.

Simulation enables scientists to quickly try out different hypotheses about a process yet
unknown and enables them to make predictions about the underlying biological mechanism.
Construction of a model, simulation of its behaviour, and comparison of the simulation results
with experimental observations allows confirmation of the existing data. If the simulation
results equal the experimental results, one can conclude that everything — or at least enough
to grasp the basic mechanism — about that process is known. If the simulation gives other
results, however, one may assume that some elements crucial to the investigated process are
misplaced in the model or even still missing.

In the simulations described here, I succeeded in reproducing observed results even though
the molecules involved are still unknown: for the induction of two ABa descendants to become
pharyngeal precursors, the signalling protein and the way it is activated in MS is still unknown,
but nonetheless this can be simulated with the model. This clearly demonstrates that GENE-
O-MATIC can indeed be used not only to recapitulate long-known facts but also to make
predictions about unknown or only partly known processes.

Even for mechanisms that seem to be understood completely, this approach can give new
insights. One question arising from the simulation is whether SKN-1 is active in C, when
after division of P, PIE-1 is not present any more. There is no biological data supporting the

10f course all models should be based on experimental data, and not be collections of purely fictitious BICs
and interactions.
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simulation results (where no SKN-1 activity occurs in C), but there is no data disproving it,
either. Bowerman and colleagues reported the presence of SKN-1 in all P,-descendants in the
8-cell-stage (Bowerman et al., 1992a), however nothing is said about the activity of SKN-1
there. All the same, the effect of recurring activity in C can easily be simulated by introducing
another BIC representing continuously active skn-1 mRNA. In this case, PAL-1 is deactivated
in C after a short period of time, which would in vivo probably interfere with C’s specification
as a muscle precursor. So the prediction derived from this simulation is that SKN-1 will not
become active in C. This is a good example of how a computer model may be used to suggest
experiments biologists could make. If experimental data were available here, more precise
statements about the underlying molecular mechanism could be made.

12.4. Robustness

Robustness is often named as one of the prominent features of biological regulatory networks.
The regulation works even if the concentrations of involved molecules are modified 10-, 100-,
or even 1000-fold. A robust model is more probably a correct description of the biological
process than one that is not robust, because most biological processes work reliably in different
and difficult conditions.

Because GENE-O-MATIC models do not contain molecule concentrations, the application
of the term is not fitting in this case. However, the question remains whether good simulation
results are an inherent property of a model (which could then be termed “robust”), or whether
they are a result of chance.

Using the Genetic Network Analyzer (de Jong et al., 2003) it has been shown that the reg-
ulatory network used in the blastomere fate specification model has a specific set of stable
states. These can be divided into two groups: those which have biological equivalents and
correspond to determined blastomeres, and those which do not have equivalents in worm em-
bryology (Ute Platzer and Hidde de Jong, unpublished data). It turned out that those stable
states with no biological counterpart result from initial states which do not occur in the worm
embryo under normal conditions, for example GLP-1 and PIE-1 activity together in the same
cell. Therefore it can be said that the ability for the generation of the embryonic founder cells
is an inherent property of the network, i.e. that the network proposed in this thesis for blas-
tomere fate specification in C. elegans is robust to changes in the calculation or simulation
technique.






13. Future Prospects

While GENE-O-MATIC already is a valuable and powerful tool, it can still be improved in
many ways. Cooperation with experimental biologists, e.g. Ricardo B. Azevedo of the Uni-
versity of Houston, Texas, and Aitor Gonzalez, who worked in our group at the DKFZ, has
resulted in many suggestions. In addition, comments from the audience of presentations on
various conferences (9™ and 11" International Conference on Intelligent Systems in Molecu-
lar Biology, 2001 and 2003; 12" and 13" International C. elegans Meetings, 2001 and 2003;
5t German Workshop on Artificial Life, 2002; International Conference on Systems Biology,
2002; 2" and " Workshop on Computation of Biochemical Pathways and Genetic Networks,
2001 and 2003) have confirmed the fact that further development of GENE-O-MATIC will lead
to valuable improvements and aid in reaching our ultimate goal: to make GENE-O-MATIC a
universal tool for biological simulation.

The following sections will describe enhancements and extensions to GENE-O-MATIC
which are planned for the future.

13.1. Enhancement of the Network Editor

As mentioned earlier, creating a genetic network from scratch is a tedious, complicated pro-
cess. To support the user in this, it is planned to add several mechanisms that will provide
initial cues as to how the network for a specific process and organism will look like. The
first step towards this has already been done by providing the database area which contains
all genes important for the process. Unfortunately, at the moment the user has to create the
database himself. The following sections describe possible approaches to support the user in
this.

13.1.1. Data Collection

There are several bioinformatics techniques available to support the automated construction
of a genetic network.

Text Mining Text mining is a method to extract relevant information directly from the
literature. By means of keyword search and by applying rudimentary grammatical rules to
interpret the text, it is possible to gather information about interactions between molecules
from the literature (see for example Friedman et al., 2001). Currently, text mining is
not advanced enough to provide a guarantee that the detected information is correct. Hu-
mans must verify the information first. Nonetheless text mining would simplify the pro-
cess of data acquisition, as it is much simpler to verify a specific information than to
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find it in the first place. Therefore it is planned to implement a function in GENE-O-
MATIC to initialize a genetic network based on text mining of relevant literature. The
relevant literature could also be found automatically by querying the PubMed literature
database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed). In addition to simpli-
fying model building, this GENE-O-MATIC extension will also increase the acceptance of
text mining as an information-gathering method in biology, because results can be analysed
visually.

Internet Databases To create a new genetic network, to verify an existing one, or to
extend it, automated search and query methods for internet databases could be a valuable aid.
A first step in this direction was the implementation of a link to WormBase (WormBase, 2000)
which allows to display all information available in WormBase for a specific gene or a specific
cell in a browser directly from within GENE-O-MATIC. This functionality will be extended to
enable access to other databases for other organisms, and also to access interaction databases
such as KEGG (KEGG, 2003) or DIP (DIP, 2003). This will allow quick addition of new
interactions which the user had not yet included into his model, and will help to verify the
existing interactions.

A long-term goal is to offer a web-based version of GENE-O-MATIC to enable biologists
worldwide to build models. Also, the genetic network editor could be integrated with protein
and gene databases directly to display regulatory interactions graphically.

13.1.2. Integration of Experimental Data

A major challenge is the quick and easy generation of genetic networks from experimental
data. This is often called “reverse engineering”. It would increase the attractiveness of GENE-
O-MATIC for experimentalists for whom it would be made more clear that it can help them
with the analysis of their own experimental data. GENE-O-MATIC would then be accepted
as a regular laboratory tool and not some exotic software that is only used by theoreticians.
Currently, one extension towards this goal is in concrete planning (integrate data from genetic
experiments), while the other (usage of microarray data) lies in the distant future.

Genetic Experiments GENEPATH (Zupan et al., 2003b) is a program that assists in the
construction of genetic pathways from experimental genetic data. It mimics the geneticist by
applying a set of patterns that search for specific gene-to-gene or gene-to-biological process
relations. It would be very useful if it was possible to import a genetic network created with
GENEPATH into GENE-O-MATIC and to simulate it immediately. Our group has already es-
tablished contact with Blaz Zupan from the GENEPATH project and negotiated an XML-based
data exchange format. In the near future, GENE-O-MATIC will be extended to be able to load
GENEPATH data.
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Microarrays In the introduction to this thesis, | stated that

[...] the fully automated elucidation of regulatory interactions from experimental
data is not possible yet, and the significance of the interpretation of large datasets
by computational methods such as clustering is arguable.

Itis all the more important to support these automated methods with additional tools, because
the steadily increasing flood of experimental data needs to be converted to useful information.
A network resulting from a cluster analysis, for example, could be simulated with GENE-
O-MATIC to confirm its correctness, or to demonstrate its invalidity. The network initialized
by automatic mechanisms can be further refined by the scientist to create a working model
of the process in question. Therefore, it will surely be a worthwhile undertaking to couple
GENE-O-MATIC to existing microarray analysis tools to initialise the networks.

13.2. Evolution of GENE-O-MATIC

Recently, the analysis of genetic networks for the discovery of evolutionary relationships be-
tween organisms has been an upcoming topic. The comparison of network structures can lead
to new insights into evolutionary processes. This could be done manually by looking at the
graphical representations, or computationally by graph-theoretic approaches. Also, by means
of comparing simulation results of networks from different organisms it may be possible to
detect elements in the networks which are under strong evolutionary pressure, and those which
are more flexible. GENE-O-MATIC could be used to retrace evolution: given the genetic net-
works of a specific process in two related organisms, it could be studied which modifications in
one network may lead to the other one. One could reproduce the mutations one organism went
through during evolution. Only the future will reveal the direction in which GENE-O-MATIC,
and the whole CELL-O framework, will evolve. ...






14. Summary

The accumulation of data on regulatory processes in and between cells by means of high-
throughput experimental methods calls for computer-assisted evaluation and analysis tech-
niques. The first step towards a global picture, which scientists hope to assemble, is to sort and
present data comprehensively. One way to achieve this is to create genetic networks, graphi-
cal representations of regulatory interactions between genes, mMRNAS, and proteins. They are
connected by arrows that depict interactions and influences between them.

Computational analysis and simulation of genetic networks can give new insights into the
process being studied. Most methods available today are restricted to the analysis of single
cells or fixed arrangements of cells. In this thesis, GENE-O-MATIC, a software tool for the
simulation of genetic networks in multicellular context is presented. It features a flexible,
three-dimensional cell model with cells that can move, divide, and interact with each other via
the genetic network. The latter is simulated using a qualitative model. Since the network as
well as the cell positions can be defined freely by the user, GENE-O-MATIC is not restricted
to the analysis of a specific organism. It has a broad range of applicability.

With the help of GENE-O-MATIC, a model was created of the process of blastomere fate
specification in the early embryo of the nematode Caenorhabditis elegans. The genetic net-
work model contains 14 mRNAs and proteins and is based on experimental data collected
from published experimental results. Cell positions are taken from microscope recordings.
The results of this simulation show striking agreement with experimental observations, and
manipulation of the in silico model results in phenotypes very similar to those of the respec-
tive mutants in vivo. It was even possible to make predictions and discover gaps in the data.

To demonstrate the applicability of GENE-O-MATIC to different organisms and conditions,
several simulations were set up for flower development in Arabidopsis thaliana. The net-
works are also based on experimental results. No a priori information about cell positions was
available, instead, cell behaviour was simulated. Here, too, the simulations could reproduce
experimental results quite well.

During model building for C. elegans and Arabidopsis, the network editor alone turned out
to be a valuable tool for gathering and sorting interaction data and genetic networks. Though
simulation and experimental results match, the cell and tissue simulation functionality still has
some drawbacks that restrict the choice of organisms which can be simulated. Asymmetric
cells and long-range signals cannot be modelled. For developmental processes such as cell
differentiation, the simple, qualitative model for the genetic network simulation turned out
to be completely sufficient, however. The possibility to make experiments in silico further
supports GENE-O-MATIC’s predictive capabilities.

It is planned to further enhance and extend the modelling environment and the simulation
methods. GENE-O-MATIC is a powerful aid to model building and hypothesis testing, and it
has the potential to become a valuable extension of the experimental repertoire of biologists.
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A. GENE-O-MATIC User Manual

The aims of GENE-O-MATIC are:
* to create and to edit a genetic regulatory network
* to simulate genetic interactions within and between cells
* to simulate organism development

The set of genes, mRNAs, and proteins that can be found in each cell, together with their
interactions, is represented by the genetic network. The editor provides you with the means to
add or remove genes, MRNAs, proteins, and interactions as well as to assign certain attributes.
To avoid having to say “genes, mRNAs, and proteins” all the time, the term “BIC” (biological
information carrier) is used here to address all three of them at once.

The user manual is supposed to help people in applying GENE-O-MATIC, i.e. it describes
how to use GENE-O-MATIC to create networks, simulate their behaviour, and use the results.
It gives a quick overview on how to set up and run a simulation. You should read it to get
a general impression of the capabilities of the software. More information about the specific
functions and options can be found in the online help delivered with the program.
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Figure A.1.: User interface of the network editor.

A.1. The Editor

The editor consists of three major parts (see figure A.1):

1. The network area where the user can create a genetic network by adding BICs and
interactions.

2. The database area that presents often-used or other interesting BICs and interactions;
these can be added to the user’s network by drag-and-drop. The database itself cannot
be modified.

3. The cell panel where the user can specify the cells for the simulation start.

If you start GENE-O-MATIC, it displays the editor window with a new, empty genetic network.
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A.2. Adding Genes to the Network

The network area has two modes, one for adding BICs and interactions, and one for moving

BICs. To switch between the modes, use the buttons in the toolbar (lgé to add, N for normal
mode, see also figure A.1) or right-click on the background of the network area and select the
mode you want from the popup menu.

Now add some BICs to the network. Switch to the add BIC/ Interaction mode. This
puts GENE-O-MATIC in the correct mode for adding new BICs and interactions. By clicking
with the left mouse button on the graph, you add new BICs. For each new BIC, a dialog
with the properties will be displayed. You should at least enter a name for each BIC. You can
always change the BIC properties later by right-clicking on the BIC and selecting Object
Properties from the popup menu.

Inthe add BIC/ Interaction mode, you can add interactions between BICs by clicking
on one BIC and dragging the mouse (while you still hold down the left mouse button) to
another BIC (or back to the same, if it influences itself in a feedback mechanism). Similar
to the BICs, upon creation of the interaction a dialog will show up where you can edit the
properties of the interaction (e.g. the strength). You can do this later by right-clicking on the
line and selecting Object Properties from the popup menu (don’t worry if you don’t
hit the line on the first try; the normal graph popup menu will be displayed). The default
strength for interactions is 0, meaning *'no influence™’. To set a different default strength for
the interactions, use the control in the upper right of the network area (see figure A.1). Most
often you will need strength values of +1 or -1.

Try to create the network shown in the screenshot (figure A.1): three BICs (hormone, re-
ceptor, and kinase), connected by two interactions with strength +1.

A.3. Adding Cells

To add a cell to your virtual organism, click New on the cell panel (lower left). A new cell
entry will be displayed.

To specify what BICs are active in the cell, click on the button “. . _” to the right of the
Genetic State property. A new window will be displayed. Ticking a checkbox will set
the BIC’s initial state to ON (active). Set the hormone BIC to active.

For simplicity, we will not alter the default values for radius, position, and division axes
here. You can adjust them later to see the effect of different division settings.

A.4. Running the Simulation

To avoid unnecessary trouble, you should save the network before you continue. Though it
does not happen very often, some circumstances may lead to an abnormal termination of
program execution, in which case you would have to start from the beginning if you did not
save the network. To save it, select Save as. . . from the Fi1le menu and enter a filename.
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Figure A.2.: Run window of the simulation

To load it again if the program really crashed, select Load from the Fi e menu and enter
the same filename or select it in the file browser.

To start the simulation, press the > (Run simulation with simulated posi-
tions) button in the toolbar, or select Run simulation... — Simulated posi-
tions from the GeneNet menu. A dialog will appear that lets you enter a note — just press
OK for now. You’ll see two windows, the Run window (figure A.2) and a 2D view of the cell.
The cell is black, and that is because we have not yet specified any colouring. To do so, select
Cell Colours from the Options menu of the GENE-O-MATIC editor window. You can
choose one colour for each of the BICs; if you have more than four BICs, you must leave out
some. Unfortunately the display is not updated automatically, but if you resize the 2D view
window, or if you minimize it and maximize it again, the colour will show. To step through
the simulation, select the Next option in the Run window and press Continue. You will
see that the simulated time changes in steps of 0.5 minutes. This is because after 0.5 minutes,
the next states are calculated, and after another 0.5 minutes, they are set. Therefore, at 2.0
minutes, the cell in the viewer should switch to another colour, indicating that its genetic state
(BIC activities) has changed.

A.5. View the Results

There are three possibilities to look at the results, or to look at what is going on during a
simulation:

* Use the 3D view to obtain information about the cells during the simulation. Select 3D
in the Run window. Then hold down the Control key and click on the cell with the
left mouse button. An Info window will be displayed that shows information about the
current state of the cell.
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» Display the current genetic states for all cells in a table. Select View Result — Ge-

netic states. .. inthe GeneNet menu. The table is continuously updated during
the simulation. Use the filters to select which BICs and cells shall not be displayed in
the table.

* Display the lineage of the simulated organism. Select View Result — Cell 1in-
eage. . . in the GeneNet menu. The cell lineage will not look very impressive for a
singe cell, but you can imagine how useful it is for lots of dividing cells. The colours in
the lineage are the same as those in the 2D and 3D views. The lineage is also updated
during the simulation, as you can see if you press the Continue button in the Run
window several more times.

Well, that is it! Congratulations to your first simulation with GENE-O-MATIC. Further infor-
mation concerning all options and properties can be found in the online help which is available
via the Help menu and the He I p buttons in the dialogs and panels.






B. UML Notation

UML stands for Unified Modelling Language. It is a graphical language for the formal de-
scription of software. Here a short overview of the notation of UML class diagrams is given.
Class diagrams are used to depict the relationships between different classes (types of objects).
This chapter is by no means a complete description of UML. For further information on UML,
consult Fowler and Scott (2000) and Object Management Group (2003), for instance.

<<interface>>
Mammal
H move() -
. sleepitime) [ Brother | [ Sister |
TerrestribMammal "
+ sleep(time) [Container ]} ["Object |
[Tree |9 [ Branch |
Rabbit
+ feed(Food)
+ isHungry(): boolean
H move()

Figure B.1.: Common symbols in UML class diagrams. Grey text and arrows are not part of
the diagram; they explain its elements.

Figure B.1 shows the most commonly used symbols in UML class diagrams. These diagrams
may contain different types of model elements:

<Interfaces>>> define the methods a type of object needs to interact with its surroundings
(*"behaviour™). They do not specify how the behaviour is implemented in the code.
Example: the interface Mammal defines the methods move and sleep.

Abstract classes contain some code for common behavioural patterns of related types of
objects, but do not provide a functional object by themselves.
Example: the abstract class TerrestricMammal implements the method sleep as
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something like **do nothing™*, but does not implement move, as different animals may
have different forms of movement (run, hop, fly, ...).

Classes can be seen as programmatic representations of types of objects in the real world.
Example: the class Rabbit implements the method move as *"hop™. It does
not need to implement sleep because that is already done in the superclass
(TerrestricMammal), the one it extends (see below). In addition, two food-related
methods are also available (specialisation of the TerrestricMammal).

Classes and interfaces can be connected by different types of relationships, drawn as **arcs",
as computer scientists call the arrows:

Implementation A class implements an interface if it provides code for all (or some, for
abstract classes) of the methods defined in the interface. The class is then the concrete
description of one possible type of object defined by the interface.

Extension or Specialisation One class (the subclass) extends another class (the super-
class) if it offers more or special methods, more ways to interact with the surroundings,
than the other class. A subclass may also redefine some behaviour of the superclass: all
terrestric mammals do nothing while they sleep, but bears snore.

Association Two classes are associated if they have some kind of relationship, for example
if one knows about the other and sometimes sends messages. Aggregation and compo-
sition are special kinds of associations.

Aggregation One class aggregates another if it contains objects of the other type. Aggrega-
tions can be annotated with a cardinality, for example a one-to-many aggregation says
that one object of the first type contains any number (between zero and infinity) of ob-
jects of the other type.

Composition This is a special type of aggregation where one class cannot exist without the
other, i.e. always contains at least one object of the other type.
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Caenorhabditis elegans

Table C.1.: BICs involved in the regulation of blastomere fate specification in the Caenorhab-
ditis elegans embryo.

Name Location Description Reference
APX-1 P, Ps, Delta/Serrate-homolog (ligand) Mickey et al., 1996
the border
to AB
descendants
GLP-1 translated Notch homolog (receptor) Evans et al., 1994,
only Hutter and Schnabel,
AB and 1994; Mello et al.,
descendants 1994
GSK-3 EMS also called SGG-1; involved in Wnt | Rocheleau et al., 1997,
signalling and spindle rotation in EMS Thorpe et al., 1997,
Schlesinger et al., 1999
LAG-1 transcription factor, no activating function | Petcherski and Kimble,
but binds to promotor of GLP-1 target | 2000
genes
LAG-3 see SEL-8
LIT-1 EMS Kinase Molin et al., 1999
MED-1, EMS cell mesendoderm-specific GATA | Maduro et al., 2001
MED-2 transcription factors
MEX-3 AB maternal RNA-binding protein, inhibits | Draper et al., 1996
PAL-1 translation
MOM-1 Py porcupine-homolog, required for | Rocheleau et al., 1997;
processing and secretion of MOM-2 Thorpe et al., 1997
MOM-2 Py Whnt-homolog (ligand) Rocheleau et al., 1997,
Thorpe et al., 1997
MOM-3 Py unknown function Rocheleau et al., 1997;
Thorpe et al., 1997
MOM-4 EMS MAPKKK Rocheleau et al., 1997,
Thorpe et al., 1997;
Shin et al., 1999
MOM-5 EMS frizzled-homolog (receptor) Rocheleau et al., 1997,
Thorpe et al., 1997
PAL-1 C,D maternal muscle-specific transcription | Hunter and Kenyon,
factor 1996
PIE-1 Po,P1,P2, germ line specification, repressor of | Mello et al.,, 1992;
Ps, Py embryonic transcription Mango et al., 1994b
PKC-3 anterior atypical protein kinase Tabuse et al., 1998
cortical
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Table C.1.: (continued)

Name Location Description Reference
POP-1 EMS, MS | maternal transcription factor of the | Lin et al., 1995, 1998;
(and other | tcf/lef HMG box family, required for | Herman, 2001; Calvo
anterior specification of MS and distinction of | et al., 2001
daughters) | daughters of a/p divisions
SEL-8 also called LAG-3. Transcriptional | Petcherski and Kimble,
activator without DNA binding capability | 2000
SGG-1 see GSK-3
SKN-1 Py and | maternal transcription factor, specifies | Bowerman et al.,
descendants | EMS fate 19923, 1993
SMG-3 AB, P, degrades nonsense (and untranslated?) | Pulak and Anderson,
MRNA, e.g. of pal-1 1993
VAB-7 C cell embryonic muscle-specific  patterning | Hunter and Kenyon,
gene (homeodomain) 1996
WRM-1 EMS armadillo/3-catenin-homolog Shin et al., 1999
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Table C.2.: Regulatory interactions in blastomere fate specification in the early embryonic
development of Caenorhabditis elegans.

Interaction

Description

Reference

APX-1 — GLP-1

ligand binds to receptor

Mello et al., 1994;
Mickey et al., 1996

GLP-1 = LAG-1

LAG-1 recruits GLP-1, and with it SEL-8,

Petcherski and Kimble,

to the DNA 2000
GLP-1 = SEL-8 interact with each other Petcherski and Kimble,
2000

GSK-3 4 SKN-1

GSK-3 inhibits SKN-1 in the C lineage,
preventing mesendoderm development
there

Maduro et al., 2001

GSK-3 — WRM-1

Whnt signal is passed on

Rocheleau et al., 1997;
Thorpe et al., 1997

LIT-1 — LIT-1

autophosphorylation

Rocheleau et al., 1997;
Thorpe et al., 1997

MEX-3 4 pal-1 mRNA

inhibit translation

Hunter and Kenyon,
1996

MOM-1 — MOM-2

MOM-1 helps secretion of MOM-2

Rocheleau et al., 1997;
Thorpe et al., 1997

MOM-2 — MOM-5

ligand binds to and activates receptor

Rocheleau et al., 1997;
Thorpe et al., 1997

MOM-4 — LIT-1

MOM-4 is required for activity of LIT-1

Rocheleau et al., 1997;
Thorpe et al., 1997

MOM-5 — GSK-3

Whnt signal is passed on

Rocheleau et al., 1997;
Thorpe et al., 1997

PAL-1 — vab-7 PAL-1 activates muscle-specific genes Hunter and Kenyon,
1996
PIE-1 4 PAL-1 PIE-1 inhibits all transcription, so the | Seydoux et al., 1996
transcriptional regulator PAL-1 is useless.
PIE-1 4 SKN-1 PIE-1 inhibits all transcription, so the | Seydoux et al., 1996

transcriptional regulator SKN-1 is useless.

POP-1 4 MED-1,2

POP-1 inhibits activity of MED-1,2
transcriptional activators

Maduro et al., 2002

SKN-1 — med-1, -2

SKN-1  activates  transcription  of
embryonic transcription factors

Maduro et al., 2001

SKN-1 4 PAL-1

in EMS and descendants

Hunter and Kenyon,
1996; Maduro et al.,
2001

SMG-3 - pal-1 mRNA

degradation of untranslated mRNA

Pulak and Anderson,
1993
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Table C.2.: (continued)

Interaction Description Reference

WRM-1 — LIT-1 Wnt signal is passed on Rocheleau et al., 1997,
Thorpe et al., 1997

WRM-1-LIT-1 complex inhibits POP-1 activity Rocheleau et al., 1997,

complex 4 POP-1 Thorpe et al., 1997




